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Abstract 

The formal and operational significance of the choice of clock synchronization in relativity is reviewed, along with the 
historical debate over the associated choice of the one-way speed of light. Kinematic test theories generalising special 
relativity are recast in a nonstandard synchronisation. In particular, the Mansour-Sex1 test-theory is generalised to avoid 
a conflict between its interpretation and its gauge choice. Corresponding adjustments to the interpretation of recent exper- 
imental tests of relativity are presented. A test-theory for local Lore& invariance is derived for a noninertial observer in 
a space of arbitrary curvature using differential geometric techniques and the Frenet frame. The Sagnac effect in a ring 
laser is considered for bounding the parameters of this theory. @ 1998 Elsevier Science B.V. 
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1. Introduction 

1. I. Background 

One of the significant discoveries in the 19th century programme of extending Maxwell’s elec- 
tromagnetic theory was Heaviside’s demonstration in 1888 that the electromagnetic field around a 
moving charge is compressed in the direction of motion by the factor of ,,/v [82]. Heaviside 
noted his failure to understand what happened physically when V>C and when he wrote to George 
FitzGerald in February 1889 about his result, FitzGerald noted in reply that he too had puzzled on 
this point: 

“You ask . . . what if the velocity be greater than that of light? I have often asked myself . . . 
is it possible?’ 

FitzGerald also suggested that the speed of light may be an upper bound for speeds. Further details 
of this correspondence may be found in [87,15]. Later in that same year FitzGerald proposed his 
contraction hypothesis for moving bodies involving the same factor as Heaviside’s formula. 

Along with this emerging awareness that the speed of light may be an upper bound for commu- 
nication, arguments were also given that any remote synchronization involved a circular argument. 
Some were presented in several publications by Poincart [ 168-1701. Even earlier, in 1880, Simon 
Newcomb was apparently aware of the flaws in an experimental proposal to determine the speed 
of light in one direction. In 1904 Michelson [ 1401 remarked of this experiment and Newcomb’s 
response: 

“In the Physikalische Zeitschrift (5 Jahrgang, No. 19, Seite 585-586) a method is proposed 
by W. Wien for deciding the important question of the trainment of the aether by the earth in 
its motion through space, by measuring the velocity of light in one direction . . . The essentials 
in the proposed method are two Foucault mirrors, or two Fizeau wheels (one at each station) 
revolving at the same speed. . . . The flaw in the proposed method - as was pointed out by 
Simon Newcomb as long ago as 1880 - lies in the fact that the effect which it is proposed 
to measure is exactly the same as the effect on the light which is to furnish the test of 
synchronism.” 

In both of these issues as well as others, such as the consideration of the feasibility of first order 
tests of the speed of light in a given direction (see, e.g., the correspondence between Newcomb and 
Michelson on this matter as quoted by Reingold [ 179]), we see the elements that formed the basis 
in this century of a position that the method by which clocks are synchronized in a spacetime frame 
of reference has an irreducible element of convention about it. In this study we explore several 
consequences of this. 

The reanalysis of the concept of simultaneity formed one of the crucial and distinguishing elements 
of Einstein’s Special Theory of Relativity of 1905 [48]. Moreover, in 1924, in one of the few places 
where he commented on the origins of the Special Theory, Einstein remarked that “By means of a 
revision of the concept of simultaneity in a shapable form I arrived at the special relativity theory” 
(quoted in [63, p. 1761). Instead of an absolute time associated with the rest frame of the aether, 
actual time for an observer was that of clocks attached to the inertial frame of the observer. Whether 
or not events were simultaneous was determined by the readings of clocks at the place of the events. 
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Such clocks were synchronised by an operational procedure using light signals. The uniqueness of 
Einstein’s understanding of time may be seen by comparing it to that of his contemporaries such 
as Lorentz (Section 2. I ). 

The standard case when light propagation is assumed to be isotropic is known as “Einstein 
synchronization”, because this method was proposed by Einstein in the kinematic section of his 
1905 paper along the following lines. A signal, from a clock at position A, is sent at a time tl (on 
that clock) to a distant clock at position B and then reflected back to the clock at A, arriving at 
(local) time t3. The time of arrival at position B is defined to be the mean of the times tl and t3. 
Einstein specifically noted [48] (English translation [52, p. 1421) 

“by definition that the “time” required by light to travel from A to B equals the “time” it 
requires to travel from B to A.” 

Such “imaginary physical experiments”, Einstein remarked, provide a way to understand what 
is meant by synchronous clocks at different places. Einstein took the round-trip speed, namely 
c = 2AB/(t3 - tl ), to be isotropic. (This itself reflects a coordinate or gauge choice, of a type 
different to that discussed in the bulk of this review; see Section 1.5.4.) Einstein also noted that this 
synchronization of clocks in a frame will be a symmetric relationship (if clock B is synchronous 
with clock A, then A will be synchronous with B) as well as a transitive one (if a clock A is 
synchronous with B as well clock C, then B and C will be synchronous relative to each other) [52, 
p. 1431. The question of whether a synchronization procedure leads to an equivalence relationship 
became an issue in later discussions on non-Einsteinian definitions of simultaneity (see Section 
2.1.4). Some subtle issues in connection with the extent to which this is understood of a “resting 
frame” only, and whether it implies the constancy and invariance of the speed of light as well as 
its isotropy, are analysed by Brown and Maia [24]; see also Sections 1.5.4, 3.1.2. The operational 
method clearly associates the synchronization within the frame with the velocity of light in the 
frame. Indeed, Einstein later made this explicit in his 1907 review article [52, p. 2561: 

“We now assume that the clocks can be adjusted in such a way that the propagation velocity 
of every light ray in vacuum - measured by means of these clocks - becomes everywhere 
equal to a universal constant c, provided that the coordinate system is not accelerated.” 

In his popular exposition of the special and general theories of relativity [51], Einstein stressed 
the inherently circular nature of such knowledge: one was prevented from measuring the one-way 
speed of light in a given direction because that would require the prior synchronization of clocks 
and thus a prior knowledge of the speed to be measured. The choice that light travels at equal 
speeds along the opposite directions of a particular path was 

“neither a supposition nor a hypothesis about the physical nature of light, but a stipulation” 

that can be freely made so as to arrive at a definition of simultaneity. 
Following this lead, standard developments of the special theory of relativity universally assume 

a constant and isotropic speed of light in every inertial frame. Ail derived quantities, such as time 
dilation and length contraction effects on a moving body as seen from an inertial frame, are also 
independent of direction. 

However, along with standard treatments the possibility in principle of postulating an anisotropic 
structure has been discussed extensively in various philosophical and physical contexts. Hans 



R. Anderson et al. IPhysics Reports 295 (1998) 93-180 97 

Reichenbach’s “The Philosophy of Space & Time” [ 1771 has been most significant in the his- 
tory of the debate. It brought out and defended the definitionary nature of Einstein’s treatment of 
simultaneity and established a notation for expressing an anisotropy in the one way speed of light. 
It was first published in German in 1928. In the 1960s and 1970s Adolf Griinbaum [73-75) also 
defended the need for a definition specifying simultaneity when discussing the one-way speed of 
light and brought the issue alive within philosophical contexts. Since then the issue has remained 
a contentious one in both philosophical as well as physical contexts, and of continuing relevance 
to a variety of foundational issues (see Sections 1.2, 1.3.1, 1.3.2). Physical issues brought new life 
into the discussion, and new directions and strategies have emerged; in the philosophical context 
and especially in recent years the debate has suffered by being explored largely in isolation from 
the details of physical theories. We consider the leading arguments for these strategies and demon- 
strate the importance of carefully clarifying the conceptual and philosophical issues for a correct 
understanding of the significance of tests of special relativity. 

An extension of these principles with recurring importance is what Reichenbach [178, Section 1 l] 
calls “the round trip axiom: If from a point A of the static system two light signals are sent 
in opposite directions along a closed triangular path ABCA, they will return simultaneously”. 
Reichenbach attributes the recognition of this axiom to Einstein. Weyl [228, Section 231 has a 
similar axiom, which he refers to as an Erfi~rungstatsuche (‘fact of experience’): the round-trip 
journey around a polygonal path depends only on the length of the path and the round trip speed 
of light. Weyl’s axiom includes Reichenbach’s axiom; these axioms are connected by, while distin- 
guishable from, the “light postulate” (that the two-way speed of light is isotropic, Section 1.5.4). 
(An alternative interpretation of Weyl’s Erfahrungstatsache, making it more akin to Robertson’s ap- 
proach by denying the light postulate until confirmed by the ‘experience’ of the Michelson-Morley 
experiment, is discussed in Section 3.1.2.) Within general relativity, the Reichenbach round-trip ax- 
iom forms a condition on the definition of a local inertial frame; it must not only be in free fall but 
also be non-rotating in this sense, so as to have no Sagnac effect [204]. These extended principles 
then state that there is no Sagnac effect for any closed path in such a frame. They constrain any 
non-standard rule for synchronization (Section 2.3.4), and guarantee that any non-standard synchro- 
nization defmes a unique hypersurface for any set of simultaneous events, so forming an equivalence 
relationship (Sections 2.1.4, 2.3.4). Moreover, they ensure (as Weyl notes) that the synchronization 
established throughout a frame from a master clock using light signals will be independent of the 
location of that clock in the frame - a feature which we note to be true of Einstein synchronization 
as well as of non-standard synchronizations which form an equivalence relationship. 

1.2. The essential issues 

How could one disprove the statement: “The speed of light in vacuum from left to right is double 
that from right to left”? By saying that this violates the isotropy of space? That begs the question. 
By timing its travel in each direction to check or refute the notion? But in relativity one sets up 
clocks using light signals assuming that these speeds are the same and are equal to c. 

We can measure a round trip time on one master clock M, say at the spatial origin, on whose 
reading everyone can agree. We take this to measure the round-trip distance d to some remote 
clock N, as in the modem, light-speed based, definition of the metre. Such round trip considerations 
show only that the two speeds in the above statement of anisotropy (let us call them 2u and u 
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Fig. 1. Remote synchronization of two clocks. Taking the one-way speed of light to be nonreciprocal (say 2u, u for forth 
and back respectively) is equivalent to changing the choice of setting at a clock N remote from the master M (shaded). 

for the journeys MN and NM, respectively; Fig, 1, must average to c and so must be ic, $z. The 
original statement has not been refuted, but made more precise; it amounts simply to a setting up of 
remote timekeeping consistent with this assumption. Any manner of coordinatising time throughout 
a frame is acceptable, provided it is coherent and internally consistent, and provided the manner in 
which it represents physical processes (in particular, their causal relationships) is clearly understood. 

If one takes the point of view that a metrical labelling of events by coordinates is the most 
important aspect of time for the physical description of events, any coherent and internally consistent 
method of keeping time is acceptable. 

Indeed, even with instantaneous signalling and so observable verification of remote synchroniza- 
tion, such as that permitted in classical Galilean theory, full coordinate freedom can still be claimed 
for the theory. This claim has been regarded as sterile, the general covariance of a theory itself hav- 
ing no physical significance [103]. Some view this as unduly extreme (see Sections 1.4.1, 25.1). 
Brown [23] comments that this view is not consistent with the historical importance of the argu- 
ments from covariance by Maxwell and Einstein in developing theoretical physics. Ellis et al. [56] 
and Ohanian et al. [ 1601 emphasise that coordinates are needed for measurement, and that some 
problems may need definite coordinates. We allude to this coordinate freedom as gauge freedom. 

Special relativity adds a unique and characteristic weight to the emphasis of this coordinate 
freedom, reflecting a decidedly nonsterile aspect of the physics of spacetime. There is inevitably 
a finite difference 2d/c between the times ts, tR of emission and reception at the master clock M 
of a light ray reflected off the remote clock N. Hence the coordinate freedom which already exists 
is arguably naturally exercised so as to give N any intermediate time in the interval (ts, ts). With 
this restriction the time coordinate labeling will reflect the causal ordering of events connectible 
by light rays and negative velocities for one-way speeds of light will be avoided. Following an 
historical custom, we allude to this particular exercise of gauge freedom as the “conventionality of 
synchronization”. 

Because we have empirical access only to the round-trip average speed of light, statements about 
the magnitude and isotropy of the one-way speed of light must reflect the assumptions made in the 
choice of time coordinatization, and such entities change as the theory is re-coordinatized, or gauge 
transformed. Other methods of establishing synchrony in a frame do not change the conventional 
status of these one-way quantities. 

We shall see that all speed-dependent expressions, including the parameters of the Lorentz trans- 
formation and so (for example) time dilation factors, have irreducibly conventional elements. This 
conventionality hinges on the existence of an infinity of possible synchronization schemes for the 
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setting of the clocks to be used in the measurement. One cannot single out from these some particular 
choice without an a priori assumption about the one-way speed of light. 

No experiment, then, is a “one-way” experiment. An empirical test of any property of the one- 
way speed of light is not possible. Such quantities as the one-way speed of light are irreducibly 
conventional in nature, and recognizing this aspect is to recognize a profound feature of nature. 

Any such extension and correction of standard test theories itself cannot avoid another conven- 
tional coordinate choice, even if one convention is explicitly exhibited, Those conventional elements 
relevant to the conclusions that are drawn need to be made explicit. In particular, it is a matter of 
principle that one cannot “test for the isotropy of the speed of light”, for to achieve this would 
be to contradict the synchrony dependence of a one-way speed. Rather, the insights afforded by 
the existence of this freedom in coordinate choice are valuable in all contexts as that of the twin 
paradox where questions of simultaneity are raised [ 1761. 

An illustration from electrostatics may help; it is more closely related to our topic than may at 
first appear (Section 2.3.3). Voltmeters are useful, despite the dependence of the value of the voltage 
at any point on an arbitrary electromagnetic gauge choice. The conventional content of the voltage 
concept is well understood and is evidenced by the manufacturers’ provision of a second (earth) 
probe on each voltmeter. We would not counsel the removal of “Danger High Voltage” signs, even 
though the implied convention allows the re-classification of an electrical feeder wire as being at 
low voltage. On the other hand, if a company were to advertise a product with just one external 
probe which purported to “test for the absolute zero of voltage in seawater”, the matter becomes 
more serious than one of taste and judgement. This kind of claim is corrected in the following. Our 
fundamental aim is to clarify, if by analysis of such counterexamples, those testable facts which are 
independent of convention (see for example the discussion in Section 1.3.2). 

1.3. Recent objections 

1.3.1. Philosophy 
In the context of philosophy, the discussion centres on the grounds upon which the natural choice 

of isotropy may be regarded as obligatory. It has often been maintained within the community of 
philosophers of science that theoretical considerations based on the context and symmetries of the 
causal structure of Minkowski space-time (by which we mean the conformal structure, the lack 
of any distinguished orientation, and the relationship between events induced by the propagation 
of light rays) are sufficient to force the choice of Einstein synchronization upon any reasonable 
theoretical formulation. While this has been a recurring theme of many articles over many years, it 
has become more strident subsequent to the work of Malament [ 13 11. 

Indeed, Friedman [62, p. 31Ofl claimed that Malament had shown that Einstein synchroniza- 
tion is explicitly and uniquely definable from the conformal structure of the space-time metric, 
and concluded that dispensing with Einstein synchronization entailed a denial of the structure of 
Minkowskian space-time. This is not an isolated view. Norton, for example, has viewed the result on 
the debate on the conventionality of simultaneity as “one of the most dramatic reversals in debates in 
the philosophy of space and time” [ 1591. However, such authors as Havas [gl], Redhead [ 1751 and 
Debs et al. [176] have contended with this extreme reading of the significance of Malament’s work. 
This is discussed more extensively later (see Section 2.2.1), with the conclusion that Malament’s 
arguments have been given undue credence in much previous work. 
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Another approach has been to place conditions on the type of spatial metric one should have on 
a hyperplane of simultaneity and argue that they can only be satisfied by hyperplanes determined 
by Einstein synchronization (see, e.g., [37,38] and countering arguments [5,6]). 

Questions on the definition of simultaneity continue to be raised in connection with measure- 
ment (e.g., the choice of hyperplane of simultaneity for the Copenhagen collapse), nonlocality and 
quantum indeterminateness and how these are to be understood in the context of the spacetime of 
special relativity theory. For a recent introduction to this discussion, see [43]. 

I .3.2. Physics 

Recently, also in the physics community there have been renewed claims that certain experiments 
constitute experimental evidence for the isotropy of the one-way speed of light. 

This reflects part of a resurgence of interest in experimental tests of general relativity in the 
1970s and 198Os, now past its peak but still significant, and now targeted more towards tests of 
local Lorentz invariance. Many of these tests have been documented by Will [229,23 l] who has 
also issued updates [232]. Experiments claimed to give experimental evidence for the isotropy of 
the one-way speed of light include an experiment at the Jet Propulsion Laboratory, Pasadena, CA, 
USA, involving the monitoring of the relative phase stability of two remotely linked masers using 
the Goldstone Deep Space Communications complex (Section 3.3.2), and an experiment at Boulder, 
CO in two-photon absorption (Section 3.3.1) by a group world-renowned for expertise in stabilising 
lasers and high-precision spectroscopy. Nelson et al. [151] use many resources of NASA and the 
US Naval Observatory to claim “an investigation of whether the one-way speeds of light in the 
east-west and west-east directions on the rotating earth are the same.” Krisher et al. [ 11 l] suggest 
the use of data from the Galileo probe “to test possible anisotropies in the velocity of light”. 

Jammer [89] comments on the fact that such questions on synchrony issues are raised, not by 
charlatans, but by competent and serious physicists. When one also considers the staggeringly ex- 
pensive resources that have been used for support of the various experimental claims, we consider 
the present discussion to be justified if only because the least one may expect is a thoroughly devel- 
oped theoretical consensus of the interpretation of such experiments. Admittedly, these applications 
can be ancillary uses of such equipment, as with the tests based on lunar laser ranging [146]. 

This emphasis on the supposed measurability of one-way properties reflects an approach which 
has its origins in Robertson’s pioneering work on testing special relativity [ 1831. Robertson’s work 
in turn motivated the Mansouri-Sex1 test-theory [133] which for 20 years has provided the most 
popular framework for analysing relevant experiments. Although Mansouri has given full weight 
to some aspects of the conventionality of the one-way speed of light [ 1361, this was incompletely 
incorporated in the test theory. The essential problem is that the effects of convention were analysed 
in the laboratory frame, but not in the reference or “aether” frame. (This may have its philosophical 
roots in a particular approach to relativity, which may be traced to Einstein [24], in which he assumes 
a “principle of light speed constancy” in a “resting” frame, and deduces comparable results in a frame 
moving with respect to this frame.) As a result, the Mansouri-Sex1 analysis of test theories itself 
embodies an appreciable and indefensible anticonventionalist element, in particular the feasibility of 
first-order tests of relativity and of gaining empirical evidence on the actual one-way speed of light. 
The correct interpretation of the Mansouri-Sex1 test theory was thus obscured by its authors at the 
very start of its historic and continuing reign (see Section 3.1.4). A later emphasis on experiments 
for the measurement of the “one-way speed”, starting with the empirical approach of Vessot [220] 
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(we note some correspondence in P/r~&s Today [ 105,106]), reflects these assertions by Mansouri 
and Sexl; it gamed prominence through the work of Krisher et al. [ 1 IO], Will [229,230] and Haugan 
et al. [78], who titled their papers on the lines “Testing the isotropy of the one-way speed of 
light . ..“. 

A side comment is necessary on this nomenclature. The concept of isotropy of the speed of light - 
strictly, its insensitivity to any change in direction - is not initially equivalent to that of the reci- 
procity of that speed - its equality for forward and reverse traverse of any path. These become 
equivalent statements when the apparent round-tip speed of light is accepted to be c (as do virtually 
all authors, and as we do in the body of this article). There is then no need to differentiate between 
the capabilities of different experiments on the basis of such distinctions. Two attempts to enforce 
such a distinction in this context, which in our judgement are abortive, are discussed in Sections 
3.1.2 and 3.3. However, one can certainly find coordinate transformations which make the round- 
trip speed of light other than c (see Section 1.5.4), and in such theories one would have to make 
such distinctions. We also note that only vacuum speeds are under consideration in this article; for 
synchrony to be defined by material and possibly nonreciprocal speeds of light is a complication 
which is of no interest in our context. 

All such experiments in fact focus on comparisons of the apparent speeds of light in opposite 
directions on a given spatial path as determined from the synchronization dejined by a slowly 
transported clock. The proper interpretation of these experiments is that slow clock transport syn- 
chronization and radar or Einstein synchronization schemes are being compared (Section 1.5.3). They 
test any alternative to a metric theory in which the equivalence of these synchronization techniques 
is not assured, so that the apparent speeds of light are no longer equal (Section 2.1.3). Experi- 
mental confirmation of any inequality would be evidence for the inadequacy of at least some of 
the metric-related hypotheses of general relativity. This, in principle minor, clarification exposes the 
conventional element (as does the second probe of the voltmeter in our illustration), makes the issues 
independent of convention and is adequate to give formal grounding of these experimental tests. It 
still lacks a physical grounding in the absence of physical models which incorporate the inequality 
of the apparent speeds of light, the nature of the physics so tested remains obscure (Section 3.4). 

Such emphases on one-way speeds have been misleading. They ignore many well-documented 
refutations of attempts to conduct one-way or first-order tests of relativity, e.g., by Tyapkin [213], 
Karlov [94-961, Trimmer [211], Winnie [233], Stedman [200], Newburgh [ 1551, Rodrigues [185], 
Cavalleri and Grnrn [26], Ungar [214], Clifton [33], Bay and White [13], Horedt [86], Michel [ 1391, 
Gron [71,70], Peres [164], and Anderson et al. [5,6]. 

We discuss the nature of test theories more fully in Section 1.4.2. Golestanian et al. [69] speak 
of a revival of experimental tests of the special theory. As Tourrenc and Melliti [209] comment, it 
is important to build a new parametrized theoretical framework for the analysis of high-precision 
experiments, especially now that it is known [ 1921 that gravitational tidal effects could be significant 
in such experiments. 

1.4. Other motivations for this article 

1.4.1. Gauge theories 
As these problems show, the traditional neglect of this topic in standard presentations of relativity 

is unfortunate. (Exceptions include [32, 1601.) We consider also that a proper undergraduate-level 
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analysis of this topic gives the opportunity for a splendid tutorial example of the effects of a 
gravitational gauge transformation. As such, it affords significant insight at an elementary level into 
the overwhelmingly important gauge field theories of modern physics. Seeing through this gauge 
freedom and gauge-theoretic structure in general relativity in the simplest possible case is a natural 
introductory exercise. 

This elementary insight can be gained at an operational level, with helpful insight. Winnie [233] 
gives a remarkably clear discussion of this, showing that all velocities are conventional, and deducing 
the modified form of time dilation and slow clock transport. We outline this and emphasise some 
conclusions. 

It is however more convenient to use a tensorial formulation. While Mailer [148] gives the full 
theory of gauge transformations in general relativity, the simple 4-tensor analysis of this question in 
our context is virtually unknown. We show in Section 1.5 that it is economical and unambiguous. 

A simple example is doubly valuable when the full theory (see Section 3.2) is nontrivial. The 
covariance of a theoretical framework, and the invariance of its physical predictions, under a change 
of convention of coordinates lies at the heart of gauge field theory, which is a vital concept in modern 
physics. Establishing the formal consequences of such an elementary concept as the conventionality 
of the zero of voltage has been of critical concern in many hundreds, possibly thousands, of Ph.D. 
theses which develop applications of superconductivity, QED, electroweak theory and QCD for 
example. Indeed, some substantial technical literature in general relativity is devoted to such gauge 
choice problems [148,60,219,88]. We note that the gauge freedom we discuss affects the zero of 
voltage (Section 2.3.3) and corresponds to the freedom in what is often referred to as the gravitational 
vector potential, namely the mixed space-time metric components gio (Sections 2.3, 2.3.4). 

We note the comments by Wald [226]: “diffeomorphisms [mapping between various manifolds] 
comprise the gauge freedom of general relativity”, and by Goeckeler and Schuecker [68] “usually 
gauge fixing, while helpful in concrete calculations, masks the general structure of the theory”. In 
our minds, not only is structure of the theory masked, but the nature of the entities that the theory 
refers to is obscured as well. 

For these reasons, we consider it valuable to defend in some detail the same principle of gauge 
or coordinate invariance in the above context. In addition, our formal analysis, in giving its deeper 
insights into the structures of possible test theories of relativity, has helped in developing new test 
theories and in the motivation and interpretation of new experimental tests. 

Some ancillary issues may be mentioned. First, at a physical level, any operational procedure 
involved in imposing some synchronization has a different character in special relativity than in a 
Galilean theory. Only time-like intervals imply a natural sign for temporal ordering of the terminal 
events, whereas there exists a universal temporal ordering in a Galilean theory. However the covari- 
ante property is the same in principle. On one view then, interpreting any synchronization scheme 
as a gauge choice and so as inducing the conventionality of synchronization trivialises the bearing 
brought by the very different space-time structure of special relativity (see Sections 1.5.1, 2.3.2). 

In Section 1.5.4 we illustrate the extent of possible gauge convention (as in [Sl]) and depart 
from a universally accepted coordinate convention in Einstein’s work as mentioned earlier. The 
conclusions of Eddington (Section 2.1.3), of Robertson [ 1831 and of Brown and Maia [24] - that 
“the Michelson-Morley experiment establishes the isotropy of the round-trip speed of light, which 
holds in the resting frame by hypothesis, also holds in the moving frame” - are themselves dependent 
on a coordinate convention on lengths. Such conventions have significantly different status to those 
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reflecting the relativity of simultaneity. Two standard conventions here reflect the use of a standard 
rod in all possible orientations in space for length measurements, and also the use of a standard 
(slowly transported) clock at all possible positions for rate or frequency measurements. Poincare 
[170] expressed the existence of a convention regarding clock rate in the definition: “. . . that the 
duration of two identical phenomena is the same; or if you prefer, that the same causes take the 
same time to produce the same effects”. The Michelson-Morley experiment supports the simplicity 
of the coordinate convention on length. The absence of a Doppler effect on reception (of regularly 
transmitted electromagnetic pulses; Bach’s Air on a G string being received in the key of G) supports 
the simplicity of the coordinate convention on frequency. 

When these standard conventions are accepted, the only remaining convention is the major issue 
of this article, namely the phase of the remote clock or equivalently the (choice of anisotropy of the) 
one-way speed of light. The standard convention of isotropic one-way light speed is in a sense less 
compelling than either the rod length or clock rate convention within special relativity. This measure 
of compulsion reflects a variety of aspects: interesting questions about the causal structure of the 
world, the spreading of time through space, and the mixing of temporal and spatial considerations 
rather than the separate definition of either. In detail, it reflects the significance of the finite speed 
of light in allowing a finite flexibility of choice of the anisotropy parameter K consistent with global 
causality (all receptions at a local time later than that of transmission). Gauge freedom alone, then, 
is not the only reason for our discussing the relativity of simultaneity. Authors such as Robertson 
[183], Brown and Maia [24] and Mansouri [ 1361, in contrast to Section 1.5.4, take the the rod 
length and clock rate conventions as axiomatic in preference to the convention over one-way light 
speed. Indeed, this is uniformly done when transferring between inertial frames, to reduce the formal 
complexity and minimise an otherwise bewildering variety of gauge choices. 

Comments on the relationship between gauge transformations and relativistic test-theories, and 
particularly general covariance, are deferred to Section 2.5.1. 

I .4.2. Test theories 
One area in which synchrony issues have enjoyed much consideration, but have not however 

enjoyed correct usage, is in the experimental testing of special relativity. The currently favoured 
approach is to use a “test-theory”, by which is meant a theoretical framework which contains a 
continuum of theories, in which a particular set of parameter values specify a theory to be tested; 
all other parameter combinations give rise to alternative (rival) theories. How much one theory 
differs from another is gauged by the difference in respective parameter values: if the parameters are 
chosen to correspond to physical observables, then different aspects of a theory can be investigated 
independently of each other. An experimental bound on the parameters, to within a given tolerance, 
constraints the viable test theories to a very limited if continuous subset of the full family of theories. 
The test-theory approach thus handles all possible theories of a given type simultaneously. 

Although the theory of special relativity was formulated before the theory of general relativity, and 
is assumed within the latter theory to be valid in the limit of negligible gravitation, the experimental 
testing of special relativity with test-theories is not as extensive as in the situation of general 
relativity, as reviews by Damour [40] and Will [232] indicate, and none of the corresponding test 
theories enjoy the same status as (for example) the PPN [143,231] or THap test theories [64] 
used in discussing general relativity (which both satis@ local Lore& invariance). More emphasis 
is placed on dynamics in general relativity than in special relativity: the most popular test-theory 
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of special relativity, the Mansouri-Sex1 test-theory [ 1331 concentrates on kinematical considerations 
and the structure of space-time. However, this bias in favour of the kinematics and space-time 
structure reflects the importance of both of these properties in the foundational aspects of special 
relativity. We attach little significance to this, since we attribute to apparently kinematic test theories 
dynamical presuppositions [23]. 

Synchrony issues have been as contentious in test-theories which violate some assumption of 
relativity as they are in special relativity, because the interpretations drawn depend critically on 
the interpretation used for the conventionality or otherwise of potentially anisotropic parameters. 
Mansouri and Sex1 [ 1331 and others have claimed that although the one-way speed of light is not 
measurable from within a purely special relativistic framework, it becomes measurable when consid- 
ered within the more general context of a test-theory. Such claims are discussed in Section 3.2 where 
it is shown that conventionality has not been adequately handled by Mansouri and Sex1 [ 1331, and 
furthermore that such supposedly empirically accessible parameters within their theory have a de- 
gree of conventionality. This is shown by reinterpreting and generalising the Mansouri-Sex1 test- 
theory to arbitrary synchrony, and demonstrating covariance for all theories in this formalism. 
Section 3.3 briefly reviews some experimental tests and their limitations regarding conventional 
quantities that they have been claimed to measure. These limitations have been obscured in many 
analyses of experiments because authors have failed to give proper consideration to synchrony. Sec- 
tion 3.3 discusses the analysis and interpretation of experiments in which synchrony-dependent para- 
meters are evaluated. As examples, two experiments (the two-photon absorption [ 1801 and maser 
phase [ 1 lo]) are analysed within our recasting of the Mansouri and Sex1 test-theory given in 
Section 3.2. 

1.4.3. Test theory for general noninertial observer 
Section 4.1 looks at synchronization for non-inertial observers, an aspect which has not been 

greatly considered in the literature. In Section 4.1 the coordinate system of an accelerated ob- 
server with arbitrary synchrony is developed, not only for the case of special relativity, but also 
for an arbitrarily curved manifold in a general relativistic theory. Introducing arbitrary synchrony 
for a noninertial observer requires a different prescription from that traditionally used for the ob- 
server who sets up a locally Lorentz, locally Einstein synchronised set of coordinates. Accord- 
ingly, the assignment of local coordinates, tetrad propagation within the observer’s frame, and 
finally the observer’s metic are discussed, and Section 5.2.1 modifies some of the assumptions in 
Section 4.1. 

The outcome of this is a novel test-theory of local Lorentz invariance, taking into account ar- 
bitrary synchrony, reported by Vetharaniam et al. [224]. Because it refers to a test theory, it is 
not assumed for all members of the family of theories that the interval is invariant even under 
a transformation between inertial frames. As such, the test theory forms a more radical departure 
from general relativity than, say, the well-established PPN test theory, in each of whose component 
theories local Lorentz invariance is maintained. Naturally, our test theory is more vulnerable to 
experimental tests. This is deliberate, and we illustrate in Section 5.4 how an experiment in ring 
interferometry which has not yet reached the sensitivity required to bound the PPN parameters (in 
comparison with a proposal by Scully et al. [ 1921) may still be used to bound the parameters of this 
theory. 
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1.5. Four-vector formulation of synchrony change 

105 

We review the four-vector formulation of special relativistic mechanics. For example, a boost in 
the x direction has the form: 

x’ = y(x - vt) ) t’ = y(t - vx/c2) , y’=y > z’=z, (1) 

where y = (1 - u~/c~)-‘/~, and u is the velocity associated with the frame change. 
We rewrite these Lore& transforms in the form X’p = Lp,X” where 

X” = (et, x)’ (2) 

(the superscript denoting the transpose) and the metric is taken to be qPV = diag( - 1, 1, 1, 1 ). This 

corresponds t 

(JZ) = 

0 a matrix 

-‘py -PY Y 

0 0 

0 0 0 0 0 0 1 

10’ (3) 

01 

The associated covariant components X, = ~&‘” are boosted by the matrix L,” = (L-l )yp. The in- 
variant interval is: 

ds2 = dXPqpV dX” = -c2 dt2 + dx2 + dy2 + dz2 . (4) 

Tensor analysis makes it natural to think of this as a “distance” which is a geometrical quantity, 
preserved under the frame change. 

The standard development of 4-vector relativistic mechanics derives the associated 4-vectors 

VP = dXp/dr where dr is the proper time interval, so that dt =ydr and Vp =Y(c,u)~. 
The 4-momentum is Pp = moVp where m. is the rest mass, so that Pp = (mc,p)T. The 4-force is 
F” = dP/dr = y(c dm/dt, f). 

In all of this development so far we have assumed that our observer S is using Einstein synchro- 
nization; i.e., he has an isotropic convention for light speed. 

1.5.1. Nonconventional synchrony 
We now propose a new set of coordinates, associated with an observer ,$ say, of the form [4] 

t”=t-kx/c, 2=x, 

or 

1 = S”,X” x.z 

(5) 

(6) 



106 R. Anderson et al. I Physics Reports 295 (1998) 93-180 

Fig. 2. (a) Einstein synchrony assumes anisotropic one-way speed of light, with clocks adjusted accordingly. 
(b) Anisotropic synchronization results in a re-adjustment in which a faster one-way speed from the master clock re- 

sults in an earlier time setting. 

Fig. 2 illustrates the relative assumptions of the standard observer S (Fig. 2(a)), and the anisotropic 
observer S (Fig. 2(b)). 

Note that what we have done is set up throughout the frame of a set of clocks for observer S 
rivalling those used by the original observer S, at the same positions and with zero relative speed 
(Z = x) but with a shift in the setting of each clock backwards by an amount (I-t = -XX/C) which is 
proportional to its x displacement. We call S”, a synchrony change matrix. Such a coordinate change 
cannot alter the physics or the predictions of the theory in any substantive way. All the consequences 
of this maverick assumption are discernable simply by applying this coordinate change to all relevant 
tensors. 

The locus of a light beam in the un-tilded, “Einstein synchronization” coordinates used by S is 
x= fct. This means that ct”=ct - ~~=ct(l 7 IC) and so 

Cf 
2=x= f- 

lF?C’ 

The speed of light in each direction is therefore 

Our above example corresponded to the choice K = i. The general result always preserves the 
round-trip speed as c. 

Much of the philosophy literature uses an alternative (but operationally equivalent) parametrization 
of synchronization dating from Reichenbach (see, e.g., [ 1891) in which the role of K is played by 

E where 

&=~(l+Ic), K=2&- 1) (9) 

making these speeds 42s and c/2( 1 - E) respectively. Einstein synchronization is defined by E = i. 
At first, we might be tempted to confine our consideration to the case IX]< 1, else speeds become 

negative, the traveller arriving (at least on the showing of local coordinate time) before leaving. This 
itself is a coordinate convention; airline travellers crossing the International Date Line in an easterly 
direction routinely survive such treatment. Accepting any such restriction on K has then to be done 
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for more subtle reasons, for example ensuring that coordinates are assigned so as to ensure the 
formal respectability of a globally causal ordering of events, i.e., ensuring that the local coordinate 
times for reception always are later than those for transmission (see Sections 1.4.1, 2.3.2). 

1.5.2. Velocity 
Not only is the speed of light affected but all speeds are affected. The speeds of material particles 

are timed by their coincidences at master and slave (remote) clocks, and these remote clocks have 
been altered. Not only speeds are affected; so are many components of all 4-tensors, especially (but 
not only) those that obviously depend on speed, such as mass, force and magnetic field. 

There are two ways of analysing the effects of such changes. First, one may take a particular 
thought experiment and track through all the times of arrival and departure in the new observer’s 
framework so as to work out the new speeds. For example, a ball leaves the origin at t = t”= 0, and 
arrives at x = d at t = d/v, where v is its Einstein speed. The time shown on i’s clock is t”= t - red/c, 

so 3 should set its speed as 

_a’ d d V 

V=r=t-Kd/c=d/v-Icd/c =iFp 
(10) 

which depends on 1~. An extended and very helpful approach on these lines is given by Winnie 
[233]. 

Second, one can plunge straight into the tensorial formalism [4], recognising that the relatively 
general, abstract and elegant manipulations being performed amount (as may be verified) to exactly 
the same thing. In this case we simply identify a new (tilded) velocity and time dilation factor from 

8Lsy ; 

in complete analogy 

(8”) = y”(c, qT 

with the Einsteinian form. Since 

c 

VX 

VY 
VZ 

(11) 

(12) 

we thus identify 

y”=y(l - %/C) 3 r”& = yv, . 

Dividing these equations immediately and naturally gives Eq. (10). Were there any doubt about the 
interpretation of u, then the first and longer method eliminates it. 

This calculation has given another result: the gamma factor for L? has also been changed. The 
above equations give 

(13) 
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In a similar way, the time dilation factor Y is obtained by finding the appropriate time ratio (in 
which the synchrony choice in the frame of the clock being monitored is irrelevant): 

“r 

y=d” dt' 

d?px'=o= dt - K~x/c,~‘=~ 

1 1 
= 

y(1 - rcQ/C) = j . 

(14) 

(15) 

Notice that the standard time dilation factor ,/m is itself a convention-dependent relation, 
and not a directly observable formula. This is because it is not a statement about the pattern of 
coincidences of events at given space-time locations, but refers to the comparison of remote events, 
and so is inevitably conventional. This needs to be borne in mind when “proving” it from experiment 
[39,61]. 

One can confirm this equation by the first method as above, thinking through a particular thought 
experiment, redefining all times. A clock moving with respect to some frame runs at a different 
rate to the coordinate clocks in that frame, and differently again depending on how those clocks are 
defined. It could even be a faster rate; 9 could be less than 1. 

If the same procedure is applied to the momentum 4-vector as was applied above to the velocity 
4-vector, the mass of an object, being the timelike contravariant component, acquires a conventional 
or synchrony-dependent element: fi = m - rcp,/c. 

1.5.3. Slow clock transport 
The anisotropic time dilation factor of Eq. (15) contains a term which is linear in V. Herein lies the 

full explanation of a possible answer to the question at the commencement of Section 1.2: Could we 
not check whether the one-way speed is isotropic or not by moving a clock slowly from the master, 
and seeing how it agrees or disagrees? It can agree with at most one choice of synchronization. 

And that choice is the isotropic choice. All present experiments indicate to some level of precision, 
and all currently accepted theories predict [97] that slow clock transport synchrony agrees with 
Einstein synchrony. 

Moving a clock slowly gives the same remote timekeeping as that given by the radar method 
when it is assumed that light speed is c in every direction so that K = 0. We stress through this 
article that this is the proper conclusion to draw from many old and many recent experimental tests 
of special relativity, and in particular all the recent tests erroneously purporting to illuminate the 
isotropy of the one-way speed of light. Those members of a family of theories which contradict 
the equivalence of slow clock transport and Einstein synchrony are discredited in proportion to 
the magnitude of their predicted, but unobserved, discrepancy. Unfortunately, these conclusions are 
rarely drawn, and have been confused with a measurement of one-way speed or of the degree of 
its isotropy. 

The equivalence of slow clock transport and Einstein synchronization might appear to prove that 
Einstein synchrony has been empirically determined, and any other value of K than zero is wrong. 
However, any empirical result must be obtained within any member of a family of theories which are 
equivalent up to a coordinate transformation. Hence slow clock transport synchrony must disagree 
with the non-Einstein synchrony when K # 0, if it is to agree with Einstein synchrony (when rc = 0). 
And that is indeed to be expected, thanks to the new time dilation factor (Fig. 3). If we take the 
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Fig. 3. Slow clock transport (middle diagram) gives a remote time setting which apparently agrees with Einstein synchrony 

(upper diagram). However there is no conflict with an anisotropic one-way speed of light when the resulting first-order 
effects from time dilation on the slowly transported clock are allowed for. 

assumption that the speed of light is anisotropic seriously and consistently, we necessarily arrive 
at the modified time dilation expression of Eq. (15). Because of the linear term this has as an 
inevitable consequence that a slowly transported clock inevitably suffers time dilation, and is in 
disagreement with that of a (tilded) coordinate clock. This is a novel if formal result; it was not 
part of Einsteinian special relativity. Hence the fact that a slowly transported clock disagrees with a 
coordinate clock with nonstandard synchrony is no proof that the clock with nonstandard synchrony 
is incorrectly set; the observed net time dilation is as much to be expected on the assumption that 
light speeds are anisotropic as on the assumption that light speeds are isotropic. 

This may now be verified quantitatively and instructively. No matter how slowly a clock is 
transported (at speed u say), it has to cover a finite distance d say, and so takes a time t = d/u. 
In that time its rate is changed to first order by a factor (1 - KU/C) (see Eq. (15)), which during a 
time t adds up to a setting shift of (-m/c)(d/u) = - d/ zc c, or the setting change between t and f. 
Note that u cancels in this last calculation. 

We have emphasised this point because confusion over this and allied matters lies at the heart 
of many physicists’ mistreatments of the subject. The reason why slow clock transport and Einstein 
synchronization coincide in a standard metric theory is examined in Section 2.1.3. 

1.5.4. Dual observer and the metric 
In parallel with earlier equations, we may write the covariant components (or adjoint, or contra- 

gredient transformations) as 
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-ct 

x - 7cct 

Y 

z 

(17) 

(18) 

Hence the covariant components, distinguished here by an over-prime, have the same time and 
a different, time-dependent position. If we try to interpret these physically as the coordinates of an 
observer s, this can only mean an observer in a different frame with a relative speed JCC (a = 0 
when x = wt), but (being anti-relativity!) who insists on using the original time, as though time 
dilation did not exist. 

s (see Fig. 4) is perfectly entitled to do this. She pays for her idiosyncrasy, as does s, but in her 
own way; she finds that although relativity is consistent with all experimental results, everything 
gets more complicated and new fishhooks emerge. For example, the round-trip speed of light is 
anisotropic for s. To see this, consider a Michelson-Morley experiment in s’s frame, in which 
beams are sent out-and-back parallel and perpendicular to the direction of relative motion (to S). 
Since these beams leave and return together, the exact definition of time interval is irrelevant, and 
any distinction in the inferences on round-trip light speed depend only on distance measurements. 
An observer T in 3’s frame who relates her coordinates by a Lorentz transformation from S will 
measure the distances, and therefore the round tip light speed, to be the same. However, 9’s distance 
measurements will differ in the parallel direction since ,I$ does not allow for a length contraction 
effect in her transformations. It follows that s will derive different lengths, and so different round-trip 
light speeds for the same observed time delay in both arms, in the two arms of her Michelson- 
Morley apparatus. The fact that this is at odds with the standard conventions on length definition 
is discussed in Section 1.4.1. The equally strained relationship of this to various round-trip axioms 
(Section 1 .I ) and the manner in which some aspects of the work of Robertson suggest similarly 
unusual coordinatisations is briefly discussed in Section 3.1.2. 

We note in passing that neither the invariance of the (isotropic) one-way speed of light nor the 
reciprocity of velocities (which are implied by the Lorentz transformation) hold in a formulation 
where K # 0. An analysis of the logical development is given by Brown [22]. In the development of 
relativity, the first result is replaced by the “light postulate”: there is a frame (and Einstein thought 
of it as a resting frame, even an ether frame) in which the two-way speed of light is isotropic and 
independent of the source. The second component is the relativity principle: dynamical laws are 
indifferent as to which of two frames are used for their description, provided they are related by 
uniform constant motion. 

One can take this a stage further: because the kinetic energy relation f - u = d(mc2)/dt comes from 
a contraction of covariant and contravariant indices (in FPc = 0), we may conclude that these two 

maverick observers have to pool their results for simplicity of definition of conserved energy. S’s 
force has to be multiplied by s’s velocity, or vice versa [4]. 
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Fig. 4. A set of observers dual to the anisotropic observers are in a different inertial frame, but use the same time as in 
the original Came. Their derived values for mass, momentum etc. form duals to those of the anisotropic observer. 

The metric can now be obtained in a variety of ways, for example: 

and we can check that fp = $,,,,$‘, etc. Gauge freedom in any theory means freedom of choice of 
the gauge, or metric; in this case, of K. 

This material will be generalised in Section 2.3. 

1.6. One-way quests 

It is natural for physicists to resort to a variety of ingenious thought experiments which purport 
to measure the one-way speed of light. It is a curious fact that some of the historically important 
measurements of the speed of light are particularly important and challenging in this connection. 

Fizeau’s original experiment of 1849 for measuring the speed of light involved a single toothed 
wheel, with the light beam passing through a gap between the cog teeth, out to a remote mirror, and 
then back through the same - or adjoining - gap [207]. The cogwheel, at Fizeau’s father’s house in 
Suresnes near Paris, plays the role of the master clock M of our earlier discussion in Section 1.2, and 
for the remote station N, Fizeau used a collimator in Montmartre. This suggests various “one-way” 
thought experiments, variants of Fizeau’s and which as far as we know have not been actually used to 
estimate the speed of light, in which for example the light beam passes in one direction only through 
co-rotating toothed wheels. Would this measure a one-way speed? No remote timekeeping is neces- 
sary, and the light travels only in one sense (Fig. 5(a)). That this was a live question is demonstrated 
by Michelson’s remark on Newcomb as reported in Section 1.1. Variations on this are possible and 
have been suggested: one can have a polygon of flat mirrors around the circumference of the rod at 
each end, and bounce a light beam off one if it is opportunely oriented. When the beam gets to the 
other end, will it arrive at such a time as to bounce off the next mirror at the same angle? (see 
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Fig. 5. A double rotating toothed wheel will allow light to traverse the system parallel to the axis, missing both sets of 
teeth, apparently if the one-way speed is appropriate. However, on an anisotropic theory, there is a compensating kinematic 
torsion in the rotation axle which allows the light to pass. The same is true for a system of rotating prismatic mirrors. 

Fig. 6. Romer’s method of determining the speed of light from the apparent changes in the period of Jupiter’s moons 

appears to be a measurement of a one-way light speed. Here one actually measures a (local) Doppler effect, insensitive 
to considerations of remote synchrony, and the same result is returned on a theory with anisotropic light speed. 

Fig. 5(b)). The answer to that empirical question will ostensibly change with the one-way speed 
of light. 

Another apparently irrefutably one-way determination is Romer’s method for determining the 
speed of light from the measured seasonal fluctuations in the apparent transit times of Jupiter’s moon 
IO (Fig. 6). After all, no clocks and no light detectors exist on Jupiter. Incidentally, this experiment 
stimulated Maxwell [138] to consider the possibility of measuring the motion of the Earth through 
the ether; and this in turn stimulated Michelson’s original interest in such matters [89]. 

In their seminal papers proposing a test theory for special relativity, Mansouri and Sex1 (1977) 
insisted that this experiment measured a one-way speed for light, and declared a conventionalist 
account by Karlov (which we here support; see also Karlov [94-961 and Section 3.1.3) to be in 
error. Nearly 20 years passed before a correction to Mansouri and Sex1 was published, [222,223] 
and in the meantime a misleading anticonventionalist approach has become customary in applications 
of the Mansouri-Sex1 test theory. 

The flaw in the one-way interpretation of this Fizeau-like experiment is again that it ignores 
necessary consequences and complications in the full and consistent description of a system once light 
speeds are deemed to be anisotropic. The slow transport clock paradox arose because extra anisotropic 
time dilation was ignored. The coordinate approach shows clearly another unexpected but inevitable 
consequence: in the Fizeau experiment, the rod must be understood to develop a longitudinal twist 
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as its rotation rate is increased. This assertion may sound bizarre, but is a purely kinematic effect, 
involving no forces. It merely notes that at the same F-time (at each end) the two toothed wheels 
are no longer aligned once the shaft rotates at finite speed. The wheels are perfectly aligned at the 
same time t, regardless of rotation speed, and if t and t” agree at one end (the origin) they cannot 
agree at the other. So the empirical fact that the light passes between the teeth on both wheels is 
perfectly consistent with it going slower in the interim. The cogs appear to have been screwed out 
of line to compensate for the speed change, and thus to deliver the same experimental result. 

As for Romer’s method, the empirical fact is the Doppler effect [I 11: the moons of Jupiter 
appear to orbit more slowly while the Earth recedes, and faster as the Earth approaches Jupiter. 
The one clock in the game is Earthbound: it is a slowly transported clock, If the light speed is 
assumed to be anisotropic, the clock on Earth suffers a compensatory extra time dilation effect 
which contrives to mask the anisotropy in exactly the same manner as discussed before. Hence the 
observed Doppler effect is synchrony-independent. Einstein synchrony is merely the least complex of 
the possible theoretical frameworks for the explanation and interpretation of the experiment. In effect 
the measured quantity is the round-trip speed of light in the Earth’s orbit. Some of the literature on 
this is discussed in Section 3.1.3. 

Some final points may be mentioned. It may be that some other combination of one-way speeds 
is synchrony-independent and so measurable; attempts here include that of Nikol et al. [ 1561 and 
Atzmon et al. [9], who compare neutrino and photon speeds e.g. from supernova SN1987a. In case it 
is wondered why special play is made in this article of the freedom in coordinatizing time rather than 
length, we discuss that possibility in Section 2.5.2. Some authors have for tutorial purposes taken 
pains to identify synchrony-independent effects [187] or equally to highlight synchrony-dependent 
effects by contrast [66]. 

2. Synchrony in special relativity 

2.1. Simultaneity and synchronization 

2.1.1. Early history of one-way conventionality 
As discussed in the introduction, the conventionality of distant simultaneity was realised with 

varying clarity from the late 19th century onwards. It has a long and involved history of debate as 
a major point of contention in the interpretation of special relativity. The definition of simultaneity 
conventions, being intertwined with the concept of speed, became an issue with the advent of 
attempts to measure the one-way speed of light as a means to verify the existence of the aether - 
and thus the existence of absolute space. According to Galilean relativity, mechanical motions are 
insensitive to uniform motion and thus cannot be used to detect a preferred frame. War [ 1961 points 
out that Maxwell’s reduction of light to electromagnetic radiation provided hope for the detection 
of absolute space: because electromagnetic waves were considered to need a medium - the aether - 
for propagation, an observer moving with respect to the aether (which was identified with absolute 
space) would detect a direction-dependent variation in the speed of light. 

In 1904, and unknown to Einstein, Lorentz had presented a transformation equation for the time 
co-ordinate that was mathematically equivalent to that obtained by Einstein [ 12 I]. Lorentz’s concept 
of time was that of a “local time”, a concept which he had originally introduced in 1895 [ 1201 
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when establishing Maxwell’s equations in a frame in motion with respect to the aether frame. 
In this 1895 paper, Lorentz expressed the local time, t ,_, for a frame moving at a speed u with 
respect to the aether frame, in terms of the spatial and temporal co-ordinates, x and t, of the 
aether frame, where tL = t - ux. Later that year Lorentz used the same concept of local time, but 
with a transformation equation equivalent to what is now known as the time component for the 
Lorentz transformation. With this transformation for time, and the “Lore&-FitzGerald” contraction 
factor for transforming the spatial co-ordinate, Lorentz was able to obtain the proper transformation 
equations for Maxwell’s equations, although only for the case of electrostatics [121]. For Lorentz, 
tL was merely a mathematical time co-ordinate without physical significance; the true time remained 
the absolute Galilean time. For Einstein, however, Lorentz’s local time became the real physical 
time for a moving observer. Einstein made a comment on the significance of this transformation 
in a review article published in 1907 [49]. Noting the difficulties of Lorentz’s theory he remarked 
[52, p. 2531: 

“Surprisingly, however, it turned out that a sufficiently sharpened conception of time was 
all that was needed to overcome the difficulty discussed. One had only to realise that an 
auxiliary quantity introduced by Lorentz and named by him “local time” could be defined 
as “time” in general”. 

Furthermore, Lorentz [122, p. 3211 himself, when comparing Einstein’s theory to his own, 
remarked in 19 15 on the significance of the same change in understanding the nature of time 
within a co-ordinate system: “The chief cause of my failure was my clinging to the idea that the 
variable t [the time of the aether frame] only can be considered as the true time and that my 
local time t’ must be regarded as no more than an auxiliary mathematical quantity”. Moreover, as 
Zahar [234, p. 731 has pointed out, Lorentz’s failure to present the correct transformation equations 
for moving bodies may be traced directly to his particular understanding of local time. 

A number of elements of Einstein’s analysis of simultaneity may also be found in essays by 
Poincare. In an essay in 1898 Poincare noted the distinction between deciding on the simultaneity 
of events that occurred at the same place and those that occurred at distant places [170]. Since there 
is no access to a universal time to order distant events, one must decide on their simultaneity or 
otherwise on the basis of a convention. For Poincare, neither light synchronization nor slow clock 
transport provides an escape from the conventionality of simultaneity. He commented (referring to 
an astronomer who has used the value of the speed of light), 

“He has begun by supposing that light has a constant velocity, and in particular that its 
velocity is the same in all directions. That is a postulate without which no measurement 
of this velocity could be attempted. This postulate could never be verified directly by 
experiment . . .” 

In several essays, both before and after Einstein’s 1905 paper (see, e.g., [168,169]), Poincare 
presented a method for synchronising clocks based on the exchange of light signals which was in 
many essential respects the same as that presented by Einstein. Folsing [63, p. 1761 has recently 
proposed that Einstein and his friend Besso probably had before them these papers of Poincare when 
they met for discussions in the year prior to the formulation of the Special Theory (more details 
on Einstein’s possible contact with Poincari’s writings may be found in the footnote annotations to 
Einstein’s 1905 paper in Ref. [52] and the Introduction to that volume of Einstein’s papers). 
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For Poincare the intent was to explicate Lorentz’s notion of “local time”. He noted that when 
it was assumed that transmission times in the directions A to B and B to A were equal, then 
clocks in a frame moving with respect to the aether would be synchronised in a way that would 
show the local time at that point [ 1681. While one may surmise that a number of these ideas were 
important to Einstein’s analysis of time and simultaneity, the way Poincare deals with these issues 
is significantly different from the approach of Einstein (for a discussion of these differences see 
the texts by Miller [142], Torretti [208] and Zahar [234]). Nevertheless the discussions of Poincare 
as well as those by Lorentz and Einstein in the decades surrounding the birth of special relativity 
show the intimate manner in which matters to do with time co-ordinates and synchronization were 
involved in the forging of the physical and conceptual basis of special relativity. 

2.1.2. Slowly transported clocks: PoincarC 
In his 1898 essay, Poincare [ 1701 mentioned the use of transported clocks to determine the time 

at different places on the Earth. Such transported clocks provide one of the rules for investigating 
simultaneity, and by this procedure the problem of simultaneity for Poincare became one of deter- 
mining the measure of time that is recorded on the clock. The latter, however, entails the comparison 
of different time intervals, and given the absence of direct awareness of the equality or otherwise 
of two different time intervals, one needs to provide a definition. While pendula and the repetition 
of certain phenomena, such as the rotation of the earth, provide standards for such comparisons, 
they do, however, implicitly involve the postulate that “the duration of two identical phenomena is 
the same”. This is a convenient and reasonable way to define equality of intervals, but for Poincare 
such a definition was not imposed by nature. Thus for Poincare the conventional element in the use 
of transported clocks reduced to a more basic one of the convention in setting of clock rates. 

That the clocks may be affected by movement was not mentioned by Poincare. Einstein, however, 
remarked in his 1905 paper [48] that where two separated clocks are synchronised with each other 
using isotropic (Einstein) synchronization, there is a loss of synchronization if one of them is moved. 
Other than that, however, he did not discuss, in that paper or elsewhere, the procedure of using the 
transport of clocks for the determination of simultaneity. 

Poincare’s reasons for the conventionality of clock transport are different from later reasons. For 
Poincare the conventionality was to do with successive time intervals: it was a convention to say 
the times between successive ticks on a pendulum are equal. There is no way of placing them 
side by side and comparing them. Thus in his 1898 paper [ 1701 he linked the conventionality of 
simultaneity via clock transport with this sort of conventionality, which differs from more recent 
discussions of slow clock transport synchronization. 

2.1.3. Conventionality and slowly transported clocks: Eddington 
In a text first published in 1923, Eddington [44] discussed, apparently for the first time, a procedure 

for synchronization using the slow transport of clocks. There was no attempt, however, as with later 
authors such as Ellis and Bowman [53], to avoid the circularity present in the determination of 
simultaneity via light signals. 

To Eddington, the need for such a procedure stems from what he refers to as the “indeterminateness 
of the space-time frame”. Frames of reference for Eddington are “fictitious” and coordinates estab- 
lished for frames contain an “arbitrary element analogous to an orientation”. We note in passing 
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that the language and notions implicit in this perspective are those we now embody in the concept 
of gauge freedom. 

Eddington enunciates a “fundamental hypothesis”: “Everything connected with location which 
enters into observational knowledge - everything we can know about the configuration of events - is 
contained in a relation of extension (or interval ds) between pairs of events”. The correct handling 
of the concept of location which Eddington is emphasising here is not so much the adoption of 
a relativistic perspective as the recognition that only relative distances have observational significance. 

The issue of distant clock synchronization arises in a discussion which establishes an appropriate 
form for the interval ds. In particular Eddington examines what happens to the reading of a clock 
while it is being moved from an event at position (xi, 0,O) and time ti to another at position (x2,0,0) 
and time t2. 

Eddington begins by taking the differences in the clock readings at the beginning and end of 
the journey as being prop ortional to J;” ds/c. If we write the interval in the form given by 
ds* = -c2 dt2 + 2crc dx dt + dx* (Eddington used -a for our K), this leads to a difference in the 
clock reading given by 

In the case of a small relative velocity, this is approximately 

(19) 

Eddington [44, p. 151 then remarked that the clock, if moved sufficiently slowly, will record the 
“correct time-difference” if, and only if, K = 0. Eddington also considered the directional dependence 
of this result. His reference to this procedure as one which leads to a measure of the “correct time” 
seems to reflect a presupposition that a slowly transported clock should agree with the coordinate 
clocks of the inertial frame, as well as a presupposition that whether clocks are at rest or in motion 
their mechanisms “record an equal interval”. However, it is clear that Eddington sees his result as 
a “convention” and not as an argument that one must (empirically) have K = 0. Indeed, as indicated 
in a following quotation, he is quite explicit about the conventional nature of this method. 

Eddington is also quite explicit about the need to make assumptions about the one-way velocities 
of light to establish relativistic formulae, and to establish a time coordinatization throughout a frame. 
For example, when discussing the velocity of light he notes that the Michelson-Morley experiment 
revealed light to have the distinctive property of being a “fundamental velocity”. It compared “there- 
and-back” journeys of light and showed them to be uniform for all directions. (This itself is strictly 
an avoidable but almost universal convention; see Section 15.4.) He also remarks: “When this proof 
is compared with the statement commonly (and correctly) made that the equality of the forward and 
backward velocity of light cannot be deduced from experiment, regard must be made to the context”. 
Eddington notes that the Lorentz transformation (which he has derived) stem from the fundamental 
hypothesis mentioned above, and is not “a pure induction from experiment”. For example, the fact 
that the Michelson-Morley experiment is of second-order has not been used. On the two methods, 
Eddington emphasized the conventional nature of both: 

“We can scarcely consider that either of these methods of comparing time at different places 
is an essential part of our primitive notion of time in the same way that measurement at one 
place by a cyclic mechanism is; therefore they are best regarded as conventional.” 
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On an issue that has emerged as one of central importance in the test theories we later consider, 
viz. the equivalence between the method of synchronization of clocks by the use of light signals 
(with the convention of equal back and forward light speeds) and that of slow clock transport, 
Eddington observed: 

“Neither statement is by itself a statement of observable fact, nor does it refer to any 
intrinsic property of clocks or of light; it is simply an announcement of the rule by which 
we propose to extend fictitious time-partitions through the world. But the mutual agreement 
of the two statements is a fact which could be tested by observation, though owing to the 
obvious practical difficulties it has not been possible to verify it directly.” 

Thus he claimed that although these statements are conventions, they are empirically related, and 
are not independent. This all suggests that an empirical test of the equivalence would mean a test 
of the “fundamental hypothesis” and of the directional independence (and observer independence) 
of the round trip speed of light. 

Eddington’s discussion is therefore a very careful one, and one in which he is especially careful to 
isolate that which can be determined by experiment and that which comes from general assumptions 
(such as the fundamental hypothesis) and conventions. Eddington then deserves credit for recognising 
the equivalence of Einstein synchronization and of slow transport synchronization in a metric theory, 
for a careful discussion of its origins, and for noting its empirical status. 

Eddington indeed deserves credit for recognising that slow transport of a standard clock on a given 
path is equivalent to setting coordinates so that the forward and return light journey times along 
a path are the same, even when the coordinatisation this gives is path-dependent. The change in 
reading of a standard clock at the beginning and end of a journey 1 -+ 2 is the change in proper 
time z, where for any metic the infinitesimal interval ds2 = -c2 dz2 = gooc2 dt2 + O(dx). Under slow 
transport (dx/dt --f 0), then, dz = adt. This interval (and proper time change) is independent 
of coordinate choice, and we may estimate it piece by piece using the Minkowski metric of the 
local Lorentz frame LLF relevant for each infinitesimal part of the journey. In this local frame, 
the Einstein synchronisation convention of special relativity holds, according to which coordinate 
time tLLF at all points is established by equalising the one-way (1 -+ 2 and 2 -+ 1) apparent flight 
times of light in a round-trip journey on a given path. In this convention go0 = - 1, and we derive 
z = J dtLLF. Hence slow clock transport time r along a given path always agrees with the change in 
a particular global coordinatisation of time which itself is based on equalising the one-way parts of 
round-trip light travel times over a sequence of infinitesimal steps on that path and therefore over its 
full extent. 

2.1.4. Slowly transported clocks: Reichenbach and others 
Reichenbach [177], and later Griinbaum [73], with their E characterization (see Eq. (9)) of si- 

multaneity relations, promoted the conventionality of the one-way speed of light in the philosophy 
of science arena to a degree which identified them with the conventionality thesis itself. According 
to the Reichenbach-Grtinbaum thesis of conventionality of simultaneity, any choice for E between 
0 and 1 (or of our K, if its modulus is less than 1) is valid. 

In his major text, The phiZosophy of space and time [ 1771, Reichenbach discussed a number 
of attempts to determine “absolute simultaneity”. He presented two criticisms against the use of 
the transport of clock procedure for attempting to establish absolute simultaneity. One problem is 
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the dependence of clock settings on the path and speed of a transported clock. The other problem 
is 

“... that even if relativistic physics were wrong, and the transport of clocks could be shown 
to be independent of path and velocity, this type of time comparison could not change our 
epistemological results, because the transport of clocks can again offer nothing but a dejinition 
of simultaneity.” 

Ellis and Bowman [53] exemplify the later counter-criticism that this is a trivial type of conven- 
tionality: 

“...this only shows that distant simultaneity is conventional in the trivial sense that any 
quantitative equality between two things at a distance is conventional. If this is all there 
were to Reichenbach’s conventionality thesis, it would be absurd to devote so much time 
to discussing it.” 

Bridgman mentions two ways of synchronising clocks other than the standard Einstein method 
using light signals. One is to use “superlight” velocities [21, p. 591. The essence of this method 
is to have a search light sweep out a distant set of clocks all at a given distance from the source 
and to have the clocks to be set when the sweep reaches them. Reichenbach’s critique [ 1771 of 
this method is not decisive for Bridgman who regards this method as “definite and unique”. More 
importantly, he notes [21, p. 611: 

“There is no reason in logic why distant simultaneity defined in this way should not be 
identical with distant simultaneity as defined by Einstein. In fact, the present presumption 
is that the two are identical. It is ultimately a question for experiment to decide.” 

Thus Bridgman considered the coincidence of the two methods of determining simultaneity to be 
an experimental issue; furthermore, his critique of Reichenbach involved a critique of Reichenbach’s 
notion of time and causal order. 

Bridgman’s other method is clock transport. He notes the inadequacy of the comments of 
Reichenbach and Griinbaum to the effect that because clocks are affected by motion they cannot be 
used for synchronization. Instead, he invoked the use, following Ives, of “self-measured” velocities 
which he claims are ‘uniquely determinable without further ado”. This does not, however, provide an 
escape from the conventionality of simultaneity: the “self-measured” distance of the trip is affected 
by synchronization convention because the path traversed is not in the rest-frame of the observer. 

In addressing these issues, Ellis and Bowman [53] made several claims in their 1967 paper which 
attracted detailed attention from authors such as Winnie [233] and Grtinbaum et al. [74]. They 
took the position that slow clock transport and light signal procedures are logically independent 
of each other. They based this claim on a somewhat obscure demonstration as to how one can 
develop a non-standard formulation of special relativity for an arbitrary value of the synchrony 
parameter E which nevertheless is supposedly consistent with the acceptance of slow clock transport 
synchronization. From here they concluded that slow clock transport can be used to “test empirically 
the principle of the constancy of the one-way velocity of light”. Ellis and Bowman also regarded 
Romer’s method as a valid method for determining the one-way speed of light. Naturally, then, they 
took the position that the Reichenbach-Griinbaum thesis of the conventionality of simultaneity is 
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false. Ellis [54] replied to the panel discussion GCnbaum et al. [74], and in a recent letter to the 
authors summarises his view as requiring an “epistemically isotropic” criterion for simultaneity, in 
which “no knowledge of direction in space is required to determine whether or not” simultaneity is 
satisfied. This also rules anisotropic synchronisation conventions out of consideration. However this 
criterion is not compulsory on a coordinatisation, which by definition requires a specific orientation. 
Ellis also stated correctly in paraphrasing work of McPhee that if we “insist on reciprocity of 
relative velocities . . . then there is no leeway for [anisotropic synchronisations]“. Brown [22] has 
discussed the nontrivial nature and interrelationship of several such reciprocity criteria; again Ellis’s 
criterion is no more compulsory than the choice of isotropic synchronisation to which it is equivalent. 
More generally, one cannot enforce requirements on a simultaneity relation without begging such 
questions. 

Winnie [233] gives a reliable and helpful discussion of slow clock transport, especially with 
reference to these views of Ellis and Bowman [53]. Winnie shows that slow clock transport is 
compatible with all synchrony choices, and thus cannot be used to distinguish any particular syn- 
chrony choice as correct. Winnie showed that numerical coincidence of the slow clock transport and 
Einstein synchronization could be demonstrated using a generalized Lorentz transformation. Salmon 
[ 1881 commented: 

“ . . . it follows from the s-Lorentz transformations that standard signal synchrony must coin- 
cide with slow clock transport synchrony. From this it follows that Romer’s method does 
not constitute an independent method for ascertaining the one-way speed of light within 
the special theory. It shows that, whatever value we assign to E, slow clock transport syn- 
chrony must agree with standard signal synchrony. Romer’s method . . . constitutes a test of 
the factual content of special relativity...” 

In this view (with which we concur) any experimental divergence between Einstein synchro- 
nization and slow clock transport would constitute an experimental violation of special relativity. 
Mansouri and Sex1 [ 1331 show this explicitly within their test theory, linking this to the choice of 
time dilation parameter. 

Ellis [55] contended that Reichenbach was wrong to defend the conventionality of simultaneity, 
arguing that the method of light signals presents us with a circular argument. The presence of other 
logically independent procedures for establishing the relationship of distance simultaneity such as 
slow clock transport undermines his claim of circularity. Ellis acknowledged that given the method 
of light signals based on an isotropic one-way speed of light as well as the method of slow clock 
transport one still needs to make a choice between them. In such a situation, if the method of light 
signals is taken as conventional then the method using slow clock transport can be verified against 
it and becomes empirical, and vice versa. However, if it is an arbitrary choice as to which to make 
empirical and which conventional, then to Ellis it makes no difference to our practices or beliefs 
if we think of both methods as empirical. This position blurs the important and subtle logical and 
empirical relationship between the two methods. 

Ellis and Bowman’s paper is however significant for the issue of the transitivity of synchronization, 
the key ingredient for a simultaneity relationship to be an equivalence relationship. They showed that 
with constant round-trip speed of a light for a path along an n-sided polygon of successive lengths 
al, a2,a3,..., a,, with the corresponding one-way speeds of light along each length determined (in the 
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notation of this article) by ICY, ic2, JC) the vertices synchronized using such light signals is preserved 
if we have the relationship: 

n 

c UiKi=O e (21) 
i=l 

Only then, indeed, is the empirical result, foundational for relativity, satisfied that the polygonal (as 
well as linear) round trip speed of light is c (Section 1.1). This condition can be seen as generalizing 
an early result of Reichenbach, which demonstrated that Einstein synchronization preserved the tran- 
sitivity of synchronization for points at the vertices of a triangular path [ 178, Section 111. This result 
of Ellis and Bowman was disputed by Griinbaum [74] on the grounds that they had imposed an un- 
necessary restriction on procedures for synchronizing pairs of clocks. This line of argument is con- 
sistent with his notion of “topological simultaneity”, which does not hold that simultaneity relation- 
ships form an equivalence relation (for a discussion of topological simultaneity see Section 2.2.1). 
However, the result of Ellis and Bowman demonstrates how nonstandard synchronizations can be 
established throughout a frame even with a directional dependence of K, if constrained to ensure tran- 
sitivity of the synchronization. This is automatically satisfied if the round-trip axiom of Section 1 .l 
is satisfied (see Section 2.3.4). 

Friedman [62] also argued an anticonventionalist position, viewing the slow clock transport method 
as allowing a determination of standard synchrony without a vicious circularity. He regarded slow 
clock transport as exploiting a connection between Einstein synchronization and proper time, and 
thus illustrating the manner in which Einstein synchronization is “deeply embedded in relativity 
theory”. Moreover, he claimed [62, p. 3171 that “one cannot question the objectivity of this relation 
without also questioning significant parts of the rest of the theory”. Friedman here had in mind the 
coincidence of slow clock transport and Einstein synchronization. To him this was a very important 
result in that the formalism of special relativity, even when generalised in synchrony, leads to 
a conclusion about Einstein synchronization [62]: 

“In particular, one cannot maintain that distant simultaneity is conventional without also 
maintaining that such basic quantities as the proper time metric are conventional as well.” 

It appears that Friedman’s reading of Winnie’s result was quite different from that of Salmon’s 
as quoted above. All this is part of a general philosophical position argued for by Friedman. He 
maintained that a “good theoretical” structure is that which is connected to other parts of the theory. 
The theoretical structure forms an edifice, and if the parts are connected, then testing one means 
a test for the rest. 

Friedman thus argued against geometrical conventionalism. If one allows the possibility of different 
spatial geometries and takes the position that they are all equally possible, then one has to introduce 
some universal quantity to account for the form of some of those geometries. But to Friedman 
this move is bad; the extra quantity has no explanatory significance and it only is used to allow 
one to entertain different spatial geometries. A similar move in the Newtonian context would be to 
postulate an absolute reference frame, and to introduce a speed parameter V which labels the speed 
of each frame with respect to the absolute frame. But V is arbitrary and disconnected from any 
other feature of Newtonian physics. Like a, it is a “bad” parameter: it is not related to any other 
part of the theory. 
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There is a hint of this view in the comment by Torretti [208]: 

“Reichenbach’s rule, as normally understood, does no more than expand it [the simultaneity 
relation] to a six-parameter family by the cheap expedient of associating every inertial frame 
with the fuZ1 three-parameter family of simultaneity relations adapted to each.” 

Presumably Torretti means by “cheap expediency” that no more physical insight is obtained by 
the introduction of Reichenbach’s E. Such a position is inadequate for the following reasons. First, 
it does not allow that it is a physical feature of the world that allows the introduction of E. Second, 
many quantities (such as potentials and phases) in physical theories fail to have numerical values 
determined by the empirical situation but yet are very significant features of these theories. Third, 
showing that results are synchrony-independent is by no means a trivial exercise; the history of this 
issue has shown the importance of carefully separating out the dependence of results on the choice 
of synchronization. 

The details of the operational argument underpinning the conventionalist thesis have been dis- 
cussed at length by Winnie [233], who discussed the consequences of various synchronization 
schemes on measurements of relative velocities, showing that they, along with time dilation and 
length contraction effects on a one-way trip, are conventional in nature (see Section 25.1). 

Jammer [89] takes a conventionalist line in such statements as “one of the most fundamental 
ideas underlying the conceptual edifice of relativity, as repeatedly stressed by Hans Reichenbach and 
Adolf Griinbaum, is the conventionality ingredience of intrasystemic distant simultaneity”. 

Selleri [ 1951 seems to miss some of the essential points discussed above when he states that 
“Only the famous experiments on the occultation of Jupiter’s satellites (Romer, 1676) and on the 
aberration of light (Bradley, 1728) were one-way measurements, even if not very precise ones . . . 
Most contemporary authors . . . seem to believe that the one-way velocity of light is not measurable as 
a matter of principle. It is fortunately still possible to disagree, and to believe instead that, owing 
to serious practical difficulties, it has never been measured up to the present time”. Elsewhere 
Selleri [194] endorses what he calls “Nature’s choice of synchronization”, by which he means the 
Mansouri-Sex1 case of absolute simultaneity (when one chooses an anisotropy in one frame so as to 
remove any space dependence in the time transformation: t’ = yt). This rests on his suggestion that 
only with such a choice is the Sagnac effect explicable in the rotating frame. However in patching 
local Lore& transformations he omits the global asynchronization effect in a rotating frame (itself 
a logical foundation of the Sagnac effect). In another article, Selleri [ 1931 inconsistently assumes the 
standard time-dilation relation (as opposed to Eq. (15)) while attempting to discuss a more general 
synchronization. 

2.2. The Rob&Malament construction 

2.2.1. Griinbaum, Robb and Malament 
Within the community of philosophers of science most critiques of the Reichenbach-GCnbaum 

thesis of the conventionality in recent years have drawn on a 1977 paper by Malament [13 I], also 
the much earlier work of Robb [ 1821 on the causal structure of the space-time of special relativity to 
which Malament drew attention. Malament’s intent was to show how the causal structure of space- 
time (as derived from the light cone structure) itself enabled Einstein simultaneity to be defined, 
and moreover, that even with, as Malament phrased it, “seemingly innocuous” extra conditions 
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(of “implicit definability”), Einstein simultaneity was the only possible simultaneity that could be 
derived from such structure. However the claims made about this notion of “implicit definability” 
and the significance of Malament [ 13 l] have been excessive. 

Malament [ 13 1] was concerned to counter a claim of Griinbaum [73] that the simultaneity rela- 
tionship between events is not uniquely definable in terms of the causal structure of spacetime and 
for this reason alone must be conventional. Griinbaum had specified a notion of “topological simul- 
taneity” in terms of the causal structure of spacetime, by defining two events to be topologically 
simultaneous if each is outside the other’s light cone. (Redhead perceptively notes that this relation- 
ship would be better referred to as absolute simultaneity [ 1751.) It is clear, as Griinbaum indicates, 
that such a notion does not specify simultaneity as an equivalence relationship, because the set of 
pairs of events that are topologically simultaneous do not form an equivalence relationship. The 
finiteness of the speed of the fastest causal structure determines these features of the relationship of 
topological simultaneity. This relationship does not provide a metrical definition of simultaneity in 
the manner of Section 1.5.4 (with definitions involving a choice of E or K). Indeed, the indeterminate 
nature of the relationship of topological simultaneity shows the need for a further conventional step 
to specify a metrical relationship of simultaneity. Griinbaum succinctly states his position as follows 
[73,_ pp. 29-301: 

“When I say that metrical simultaneity is not wholly factual but contains a conventional 
ingredient, what am I asserting? I am claiming none other than that the residual non- 
uniqueness of logical gap cannot be removed by an appeal to facts but only by a conven- 
tional choice of a unique pair of events at P and at Q as metrically simultaneous from 
within the class of pairs of events that are topologically simultaneous.” 

Malament [ 13 l] begins with a demonstration of the straightforward result that the orthogonality 
of a hypersurface of simultaneity to the world-line 0, defining rest within an inertial frame, is 
equivalent to Einstein synchronization in that frame. Then using a parallelogram construction of Robb 
[ 1821 in 19 14 Malament indicated how orthogonal&y can be defined in terms of a parallelogram 
formed of null rays (light paths) whose diagonals form the world-line, 0, and the hypersurface of 
simultaneity. 

Such a parallelogram describes the history of a sequence of events in which two light rays (the 
dotted lines in Fig. 7) are emitted in opposite directions from the origin 0 of some inertial frame 
S, each then triggering a returning ray which arrives at that origin with its fellow. It follows from 
the manner of construction of the Robb parallelogram that the two opposite comers A, B of the 
parallelogram, which mark the events of emission of the returning rays, necessarily stand in the 
relation of Einstein synchronization to each other within S. Further details of this result may be 
found in [123,175]. 

Redhead’s exposition clearly shows how Minkowski orthogonal&y of a timelike and spacelike 
line (the result that the product of their gradients is 1/c2) is invariably satisfied by the diagonals 
of a parallelogram of world-lines in which adjacent sides have opposite slope. The fact that ad- 
jacent null rays have equal but opposite slopes in the Robb parallelogram ensures that Einstein 
synchronization with its unique symmetry can be defined directly. All of this may be discussed 
without introducing coordinates. (The uniqueness of this result is analogous to the way in which 
the definitions of a rhombus and its diagonals enable a 90” angle to be defined without further 
nonmetrical specifications.) Thus there is a manner of specifying Einstein simultaneity uniquely in 
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Fig. 7. The Robb-Malament parallelogram construction for a purely geometrical definition of Einstein synchrony. 0 emits 
two light beams which reach A, B respectively and are reflected to 0. If they leave 0 together and arrive at 0 together, 
their reflection times at A, B stand in the relation of Einstein synchronization for 0 (but not for an observer in a different 
inertial frame). 

Fig. 8. (a) Griinbaum’s definition of topological simultaneity: two events p,r outside each other’s light cone. (b) Causal 
automorphisms f preserve the causal connectibility of events. (c) A synchrony transformation S --+ S changes from a 
hyperplane of simultaneity which is orthogonal to the origin world-line to one which is nonorthogonal. (d) A change of 
inertial frame, from origin world-line 0 to 0’, renders an Einstein synchrony a non-Einstein synchrony (the hyperplane 
S is orthogonal to only one world-line). 

terms of causal relationships. This result alone does not confer any compelling status to Einstein 
synchronization, and therefore does not challenge the essential point of the conventionalist thesis. 

2.2.2. Implicit dejnability 
Malament [ 1311 proceeds to make a much stronger claim than this definability of Einstein syn- 

chronization in terms of the causal structure. He shows that Einstein synchronization is the only 
simultaneity relationship which satisfies “seemingly innocuous” extra conditions; only Einstein syn- 
chrony is “implicitly definable” from the structure of a world-line, 0, together with the causal 
structure (the causal connectibility of events). 

Malament’s notion of implicit definability requires the concept of causal automorphisms. These are 
mappings of (coordinatized) events which preserve the relationship of causal connectibility between 
events (Fig. 8(b); contrast Griinbaum’s definition of topological simultaneity in Fig. 8(a)). Thus, 
if p and q are able to be causally connected (i.e., one of these is in the light cone of the other, 
or equivalently the interval is timelike), then a mapping f is defined to be a causal automorphism 
if and only if for all such pairs p and q, f preserves this relationship, i.e., f(p) and f(q) are 
causally connectible. 

In addition, Malament [ 13 l] defines an O-causal automorphism as such a mapping which possesses 
the additional property that the world-line 0 is mapped to itself, i.e., that p is on 0 iff f(p) is 
on 0. 
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A simultaneity relationship S(p, r) (a Boolean function of a pair of events: true if p, r are 
simultaneous, false if not) is taken to be implicitly definable from the relation of causal connectibility 
and the world-line 0, if and only if for all points p and Y (now with a space-like interval) and for 
an O-causal automorphism f : p -+ f(p) 

S(p, Y) if and only if S(f(p), f(r)) . (22) 

Malament [13 1] argues that demanding implicit definability for any simultaneity relationship S 
with respect to 0, i.e., the requirement of Eq. (22) for all O-causal automorphisms f, limits the 
simultaneity relationship S to Sim 0, namely standard Einstein synchronization (the choice of E = i 

in Eq. (9)) relative to 0 as the observer world-line (provided the other conditions hold, namely S 
is an equivalence relationship, and nontrivial in the sense that there exist points p E 0 and q @ 0 

with S( P, 4)). 

This argument has been widely accepted. Although, as described in Section 2.2.3, Redhead chal- 
lenges the anticonventionalist interpretation of Malament’s result he remarks: “Malament (1977) 
has proven the remarkable result that standard synchrony is the only nontrivial equivalence rela- 
tion even implicitly definable from the relation of causal connectibility and the world-line of the 
origin of an inertial frame of reference” ([ 175, p. 1141). Torretti [208] accepts that Malament’s 
discussion (as also an earlier related discussion by Zeeman [237]) of implicit definability and causal 
automorphisms limits consideration to the standard Lorentz transformations and to hypersurfaces of 
simultaneity orthogonal to the world-line: “More importantly perhaps, Malament proved that simul- 
taneity by standard synchronization in an inertial frame F is the only non-universal equivalence 
between events at different points of F that is definable (“in any sense of ‘definable’ no matter how 
weak”) in terms of causal connectibility alone, for a given F”. Friedman [62] and Norton [159] 
give the same significance to this aspect of Malament [ 13 11. 

Such causal automorphisms inevitably ensure that all pairs of points on an orthogonal hyperplane 
are mapped to another orthogonal hyperplane, and set up the notion of implicit definability in such 
a manner that it can be discussed only within the context of Einstein synchronization, reducing the 
substantive point to a near-tautology. By definition, Simo-preserving causal automorphisms preserve 
the light cone structure which has a symmetrical coordinatization around the world-line 0. Einstein 
synchronization is associated with a symmetrical causal structure. It is possible that the attention 
which Malament’s paper [ 1311 has attracted from commentators has stemmed from a tendency to 
visualize a light cone as a symmetrical structure in space-time prior to considerations of coordi- 
natization (fostered no doubt by a long textbook tradition to so represent light cones!), and from 
there to ascribe to its proposed symmetry about a world-line the degree of reality one gives to an 
upright cone in three-dimensional space. For a similar assessment to ours, if on this point only, 
see [37, footnote 31, also [93]. These authors note that an ontological interpretation of light cones 
is an essential feature of a favourable interpretation of Malament; one must be a spacetime realist 
to envision an actual shape of a light cone in an entity, “space-time,” prior to considerations as to 
how space and time are to be put together; however different simultaneity relations may be argued 
effectively to modify the geometrical structure of the light cone. 

There is a technical problem with Malament’s proof. Suppose with Malament that we have a 
simultaneity relation S(p, q) obeyed by p E 0 and q &I 0, and that the hypersurface Q is the set 
of events r such that there exists an O-causal automorphism f satisfying f(p) = p, f(q) = Y. 
Malament argues that when Simo( p, q) does not obtain, Q is a double cone. However, as Malament 
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notes, S(p, q) implies S(f(p), f(q)) and so S( p, r). Hence Q is the hyperplane of S-simultaneity 
which passes through p, and the mapping q -+r is confined to this hyperplane. It may be canted 
with respect to 0; for example, S may represent an anisotropic synchronisation of the type we 
consider in this article. Malament then considers any event v on 0 and introduces another O-causal 
automorphism (which Malament also called f, but which to avoid confusion we call h), chosen to 
give h(p) = o. He states that h(Q) is a double cone; as before it may be a hyperplane parallel to 
Q. (Apparently his reason for this is to do with an implied restriction of the concept of O-causal 
automorphism to the inclusion of rotations and reflections.) At this point Malament assumes an 
intersection point w for Q, h(Q) ( as a defining characteristic of non-Einstein synchronisation Sirno), 
and argues that w is simultaneous with all of p,q,r, etc., so that the simultaneity relation being 
respected can only be trivial. However Malament’s construction fails here; this intersection point 
w for Q and h(Q) will not exist if h(Q) is parallel to Q. Arbitrarily restricting the concept of 
an O-causal automorphism to avoid this problem connotes the symmetrised double-cone structure 
which is mandatory for Malament’s proof. 

Too little geometric structure has been included in Malament’s proof to point to a synchronisation 
scheme with a value of K in Eq. (5) other than zero. The input is too sparse and too symmetric 
to support any such alternative result. Norton [159] (correctly in our view) notes the intrinsic im- 
possibility of one world-line and its light cone structure picking out any other preferred spatial 
direction. Norton takes this (as we argue, incorrectly) to mean that only those structures which are 
symmetrically placed with respect to the world-line are consistent with the causal structures. In this, 
Norton has touched on one move at the heart of these attempts to ground Minkowski orthogonality 
on the causal structure, and from thence to argue that nature prefers a particular metrical defini- 
tion of simultaneity. This leap from the absence of any preferred direction in the formulation of 
a causal structure of space-time to the assertion of a symmetrical structure such as that represented 
by a hyperplane of simultaneity orthogonal to the world-line is not justified, either logically or 
physically. 

The Robb construction itself already demonstrated that Einstein synchronisation can be defined 
solely in terms of the relation of causal connectibility. Robb’s analysis does not suffice to make 
Einstein synchronisation unique in this, as Malament’s criticism of Griinbaum was aimed to demon- 
strate, and the above-mentioned problems in Malament’s proofs and aims show that his analysis has 
not succeeded in building on Robb’s. 

In fact, alternative synchronisations such as Eq. (5) may also be defined in terms of relation- 
ships based on causal connectibility. For example, one may introduce a second world-line R into 
the above argument from causal connectibility, with as much justification as the introduction of 
the original world-line 0. Then Sim R, or Einstein synchronisation for R, can be taken to define 
the synchronisation scheme So for the observers 0. This is a non-standard synchrony scheme be- 
cause it is related to Sirno by Eq. (5), K being defined by the relative speed of 0 and R. (More 
generally we may use 1c in Eq. (23) to parametrise the direction as well as the magnitude of this 
relative velocity u of 0 and R: K = u/c.) Such a procedure has the geometric input necessary to 
permit the indication of a unique and preferred direction in space. Janis [90] has given a related 
argument, emphasising the role of such a second world-line in relating Einstein synchrony to an 
anisotropic counterpart, and a number of authors [4,90,174,5] have already employed this link be- 
tween a synchrony change and a frame change. (We note that Spirtes [198], who locates the type 
of conventionality at issue in simultaneity considerations as the choice of a temporal orientation in 
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space-time rather than on the choice of any particular numerical value of a, regards Malament’s 
results to be extendable in a similar direction: “if an asymmetric causal connectability relation is 
intrinsic, then not only is standard simultaneity not conventional, there are also an infinitude of non- 
conventional nonstandard simultaneity relations”.) There is no need to discuss “seemingly innocuous” 
constraints or to introduce concepts such as implicit definability; the above construction is precise 
and unique. Therefore Einstein synchronisation is not the only simultaneity criterion that can be 
specified in terms of considerations of causal connectibility. Also Redhead [175] has noted that the 
use of a nonorthogonal hyperplane for simultaneity still satisfies the requirements of an equivalence 
relationship. 

Alternatively, as we specialise the allowable causal automorphisms further than Malament’s spe- 
cialisation to O-causal automorphisms, we can choose at the same time to broaden the class of 
synchronisation schemes which are respected by such transformations from the previously unique 
Einstein synchronisation to all of the anisotropic schemes of Eqs. (5) and (23). We may restrict 
attention to those O-causal automorphisms which preserve the orientation of the hyperplane of 
simultaneity S(p, r). One may use coordinate language (as does Malament [131]) to specify this 
for non-Einstein simultaneity as the combination of an overall scale transformation (t, x) -+ (bt, bx) 
and to time translations t -+ t’. 

For these reasons it is prejudicial to require of any simultaneity relationship that it be preserved 
under all O-causal automorphisms as opposed to some other equally geometric criterion. There is 
nothing unique in this context about Einstein synchrony. It can indeed be specified uniquely by 
the choice of an appropriate geometric criterion (a la Robb), but exactly the same is true of the 
rivals we consider. Hence no compelling reason for Einstein synchronization emerges from such a 
discussion. 

2.2.3. Frame change and synchrony change 
That Malament’s paper does not significantly aid the anticonventionalist case has been argued 

elsewhere. Redhead [175], following Janis [90], points out that Malament’s prescription for singling 
out Einstein synchronization does not make it compulsory. Debs and Redhead [176] express this as 
follows: 

“...The conventionality thesis can be defended on the grounds that any method that 
establishes standard synchrony in a moving frame will automatically define nonstandard 
synchrony in a stationary frame, so the conventional element is restored in specifying 
simultaneity in the stationary frame, viz., the choice of whether to import into that frame 
the standard synchrony defined in any of the moving frames.” 

In particular, the orthogonality condition does not survive transformation to another choice of 
inertial frame. The world-line of the origin in the Robb-Malament construction singles out a preferred 
frame for this choice of synchronization. But this choice itself is a nonconventional and anisotropic 
synchronization of precisely the type of Eq. (5) for any other choice of inertial frame (Fig. 8(c), 
(d)). This justifies the conventionalist position in the case IX] < 1. The arguments of Redhead and 
Debs are thus only a subset of those which preserve the conventionalist position, although they are 
perfectly adequate for this purpose. 

No factual or compelling status is conferred on Einstein synchronization by this discussion, 
and the absence of such a status, the essential point of the conventionalist thesis, is not affected. 
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involve coordinatizations nor are associated with a preferred spatial 

2.3. Generalised synchrony as vector field 

Following Anderson and Stedman [4] again we extend the analysis of Section 1.5 to consider an 
observer who uses the coordinates 

t”=t-lc*X/C, i=x, (23) 

i.e. who assumes that the velocity of light in the direction i is of the form 

c(h) = 
Cii 

1-K.Ij’ 
(24) 

The three-vector in is a vector field which defines the synchronization scheme, and is arbitrary. 
Exactly as in the simpler case of Section 1.5 (where K is parallel to the x axis) the kinematics of 
this observer may be obtained by applying a synchrony transformation tensor (dependent on rc) to 
the quantities corresponding to the Einstein synchronization case K = 0; the manner in which various 
quantities vary with synchrony is then readily available. 

Such equations are readily derived when K is a constant vector field. More generally again, rc may 
be an arbitrary function of position in space [4]. This extension is helpful to show the synchrony 
independence of standard results in the context of ring interferometry (see Section 2.3.4). And none 
of these choices are as general a gauge change as those considered by Havas [81]. However, the 
above choice of a constant K is sufficient for the generalization of this subsection. 

The synchrony transformation matrix, expressing synchrony dependent quantities in terms of their 
Einstein synchronization form, yields all necessary synchrony information and enshrines the power of 
the tensorial approach. The same considerations which guarantee covariance in Einstein synchroniza- 
tion also guarantee it in more general synchrony. Any tensor generalises under arbitrary synchrony 
with its behaviour under parity preserved. In this coordinatization the transformation takes the form 
(SK)py = P, + y~fl’~~, where (K,) = (0, K)~, or 

W’,) = 

1 --Kl --Ic2 --Ic3 

0 1 0 0 
00 10 
00 0 1 

(25) 

The generalization of the Einstein synchronization components of an arbitrary tensor Tfl;;,, is related 
by T$;,, = (SK)‘ti(S_,)$‘T”‘,.. In any frame with synchrony IC, the contravariant components of a 
four-vector in a more general synchrony, vfi, are given with respect to the Einstein synchronization 
components, P, by 8’ = V” - NC. V, p = Vi, while the covariant components are expressible as 
+o=Vo=-P, V=v+#cvo=v-KV? 
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Hence our earlier Eq. (lo), Section 1.5.4 for the velocity 

V 

V=I-K.v/c’ 

(1998) 93-180 

and the metric become 

(26) 

(27) 

or GtiV = raV+ (ror’cV + y10~1c~ - QIC,). Similarly Eq. (13) becomes 

y”=y(l - ic~V/C) (28) 

1 

= J(1 + rc * i/c)2 - iP/c2 ’ 
(29) 

v = a/( 1 + rc .6/c) ) (30) 

y=T(l +ic+>. (31) 

By examining the velocity and momentum four-vectors, one sees that the generalised acceleration 
and Minkowski-force four-vectors, a = du/dz and fM = dp/dz, respectively (z being the (synchrony 
dependent) proper time of the particle in question), are related by fM = m,a (m, being the invariant 
rest mass) under arbitrary synchrony, the four-vector a having components 

a = {y4[a f v/c + (1 - rc * v/c)a . ICI, y4[a * v/c + (1 - Jc * v/c)a * Ic]v + y2a} , 

where the generalised three-acceleration a = dv/dt and is related to the Einstein-synchronised 
acceleration a~ by 

a = [( 1 + K . vo/c)ao - Ic . afJvo/c]/( 1 + K * vo/c)3 . 

(32) 

three- 

(33) 

It is easily seen that the three-vector parts of both a and f are unaffected numerically by synchrony, 
as is the relativistic three-momentum. One also obtains the synchrony generalization of the relativistic 
version of Newton’s second law as 

f = m,y(a + y2[a * V/c + (1 - rc f v/c)a * ~l>VlC> , (34) 

where f = y-‘fM. 
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Derivative operators must transform like four-vector components: 

129 

& = (&, 9); & = a,, Q = v + &I) ) 

3~ = (30, 6); 20 = 30 - K. v = -a, - K. v, 9 = v . 

(35) 

(36) 

2.3. I. Generalised Loren tz transformation 
The form of the Lorentz transformations under generalised synchrony choice has been discussed 

by several authors including Edwards [45,238], Winnie [233], Anderson and Stedman [4], and (with 
especial care over the status of the various postulates) Brown [22]. 

The modified Lore& transformation, from one frame Z (with synchrony vector K) to another 
frame Z:’ (with synchrony vector K’), is given by the matrix composition (compare Anderson and 
Stedman [4], Giannoni [65]): 

In analogy with Moller’s [148] result for the standard (Einstein 
mation Lp’, from frame S to frame S’ for an arbitrary boost, 

dt’ = y(dt - us dX/c2) , 
v.dx 

dx’=dx+(y- 1)2i2v--ydtu, 

(37) 

synchronization) Lorentz transfor- 

(38) 

if the respective choices of synchrony vectors are now K and K’, the generalised Lorentz transfor- 
mation is 

dt”l=F[l +ic+-&Y/c]dt”-(~c’+~C’).dZ/c 

-[r”(l + Ic.&) - l]- ;ic’ ij . df + $k . Z( K . di)/c , 

v”.dx, 
dZ’= +dt”+ dZ + [T(l + JC+) - l+u - FC(ic.dZ)/c, 

(39) 

(40) 

where y”= y( 1 - rc. u/c), v” = u/( 1 - IC. u/c). We can read off from the coefficients the synchrony- 
adjusted forms of the length contraction, time dilation and velocity reciprocity relations. 

2.3.2. Group structure and generalised synchrony 
Giannoni [65] and Ungar [2 151 discussed the algebraic properties of this generalised Lorentz trans- 

formation. Giannoni gave a group of transformations which allows differing synchrony conventions 
in any two frames of reference, but requires no restriction on the magnitude of synchrony vector 
(so /K/-C 00) and thus admits infinite speeds, negative speeds (as opposed to velocities), and some 
conceptually difficult effects such as negative length contractions. Ungar criticised Giamroni’s group 
because it “rules out a causality condition that causes precede effects”, and presented a transformation 
group which has Jrc( < 1 and thus obeys the causality condition. However, Ungar’s algebraic structure 
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imposes the same synchrony choice in each reference frame, against the spirit of the conventionalist 
thesis. And in defence of Giannoni, it should be pointed out that one should distinguish “spatially 
coincident causality” from “distant causality”; there is no contradiction if an occurrence at P at time 
t causes another occurrence at Q # P at time t’ < t because the two different times are measured 
at spatially different locations. Indeed, as mentioned in Section 1 S.1, such apparent inconsistencies 
are familiar consequences of the International Date Line for airline travellers. 

The rejection of a temporal ordering in distant causality espouses a point of view in which 
time at any spatial point flows independently of time at other points, with there being no canonical 
prescription for the way one links the times at spatially separated points. This viewpoint is in accord 
with the “fibre-bundle” representation of the conventionality of simultaneity suggested by Anderson 
and Stedman [S]. In this representation, the conventionality of simultaneity is identified with the 
freedom to choose K as a particular connection in a fibre bundle consisting of a base space of 
three-space and fibres of the world-lines of particles along which time is represented. Thus a choice 
of synchronization is a choice of how the different fibres are to be compared. 

Since the spinor formalism gives a powerful and elegant way of expressing and combining 
(standard) Lorentz boosts [143], it is natural to ask (in light of the above generalizations) whether 
the spinor formalism can be used to express the Lorentz transformations in arbitrary synchrony. 
This is addressed in Section 2.4. 

2.3.3. Electromagnetism in a more general synchronization 
The laws of electromagnetism, as of mechanics, remain covariant under a synchrony transfor- 

mation. Since a,Jp = 0, a,J” = 0; since FYpv = pcloJp’, the corresponding equation holds for the tilded 
quantities. 

For example, the 4-current density has its contravariant timelike component (charge density) 
affected by synchrony. This leads to another curious paradox: what in Einstein synchronization is 
current flow without net charge density (perhaps because of countermoving holes and electrons) can 
in nonstandard synchrony turn into a net charge density. This may be explained by noting that the 
remote timing operations which must be used to gate the (moving) charge in a given length are 
affected, and in an anisotropic manner. 

As another example, the electromagnetic four-vector potential formed from the electromagnetic 
scalar and three-vector potentials (Ap = (V/c, ,4)T) transforms under synchrony change as does any 
other 4-vector. Hence the contravariant voltage V, being the timelike component, is synchrony- 
dependent; the choice of the one-way speed of light affects the zero of voltage by an amount propor- 
tional to the component of the vector potential in the direction R. This indicates a curious parallelism 
of the two previously very different conventions discussed in the Introduction. (The contravariant 
4-potential is arguably more appropriate than the covariant counterpart, since it is linked to the con- 
travariant electric field, then the contravariant Lorentz force and so to the contravariant 4-position, 
the choice we initially made for interpreting the physical significance of the transformation we 
discuss. The covariant counterpart has a very different physical interpretation; see Section 1.5.4.) 
More generally, the gauge invariance of the electromagnetic fields under the gauge transformation 
Afi -+ A” + PA holds in the revised coordinates provided the timelike part of the gauge term @(i 
is modified appropriately. 

The generalised electromagnetic field tensor p pcv = a”@.@ - 8’~~ [4,65] has as its components in 
the usual representation the synchrony-adapted 3-fields J!?, h (e.g., J!?, = cpol ). Similarly Ffly contains 
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8, & (for example 8i=&). When these are expanded in terms of the old fields they are found to 
have the form: 

e=E+CKXB, B=B, (41) 

Z?=E, b=B-HE/C. (42) 

It is a worthwhile exercise to verify these equations, and to check that the quantities EZ - c2B2, E. B 
which are invariant under proper Lorentz transformations have corresponding invariants under 
synchrony transformations, although the choice of contravariant and covariant component must be 
handled with care, In detail J!?. j = E. B since the corresponding invariant, FPvFaSeZ~PY, uses only 
the contravariant components; whereas B2 

I 
-c2b2 # E2 -c2B2=k.k-c2b.BB, since the invariant 

has the mixed form FpYF . 
Naturally, one may fo&w this through to determining the form of Maxwell’s equations in vacua 

with sources under general synchrony: @pv = 0 and $FY~l = 0 (where { } denotes cyclic permu- 
tation of bracketed indices). These therefore take related forms when all quantities are transformed, 
provided the appropriately contravariant or covariant 3-fields are used: 

V. B = F/&g ) I? x B=&+;a,E, 

w2=0, ~xx=ca”“i#. 

These equations may be readily verified from Eqs. (4 1) and (35) and give a wave equation in 
free space whose solutions are indeed waves propagating at the anisotropic speed which we orig- 
inally imposed [65]. This may help to remove doubt as to whether the detailed dynamics of light 
propagation imposes a preference on any synchronization scheme. A student who has mastered the 
consequences of an anisotropic synchronization to this point has passed a significant threshold in 
understanding which will fortify against the recent erroneous trends in the literature. 

2.3.4. Variable synchrony field and ring interferometry 
Suppose, finally, that we choose a synchrony vector II which is arbitrary, 

vector field [4,96]. Under a general transformation of the form 

T=t--3, i’=X 

the incremental transformations are di= dt - JC . dx, dZ = dx and the metric 
of Eq. (27) where 

K Z V(12 ’ x) = rz+2vIzi . 

no longer a constant 

(43) 

becomes of the form 

(44) 

For a round-trip speed of light to be synchrony-independent, it is necessary for the round-trip 
time interval 

&&~‘“-;*d”) (45) 

=i$-fiCcVxK+dS (46) 
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to be independent of rc. Because K is it-rotational (the gradient of a scalar has no curl) this condition 
is guaranteed. It is a basic requirement that the results of optical ring interferometry be manifestly 
independent of such synchronization choices (Section 1.1). Because this synchrony scheme is defined 
by a unique hypersurface (Eq. (43)), it forms an equivalence relation (Section 2.1.4) and satisfies 
the round-trip axiom of Einstein and Reichenbach (Section 1 .I; see also the discussion of Weyl and 
Robertson in Section 3.1.2) automatically. 

Conversely, any scheme satisfying (as it must) the Einstein-Reichenbach round-trip axiom must 
correspond to a space-time coefficient K in the metric which is irrotational, and so has the form 
06, where the integral field 4 may be written Iz. x (by definition of a suitable, if not a unique, 
choice of vector field I?) and thence a synchrony hypersurface (Eq. (43)). Hence conformity to the 
round-trip axiom will guarantee that any synchrony will be an equivalence relation. The scheme of 
Section 1.5.1 as a special case certainly satisfies these requirements. 

2.4. Spinors 

Although the symmetry group of Minkowski space is SO(3,1), a Lorentz transformation can be 
represented in a 2D complex space, with symmetry SL(2,C), in terms of the matrix representation: 

ct+z x+iy ct +z x + iy 
x - iy ct - z x - iy et - z A+ , (47) 

where A+ is the hermitian conjugate of A. 
For example, in their development of the spinor formalism for the expression of the Lorentz 

transformation (in arbitrary synchrony), Penrose et al. [162] began with the future and past null 
cones at the origin of Minkowskian spacetime (c2t2 -x2 - y2 -z2 = 0), and then took constant time 
slices (ct = &l ) to obtain two unit spheres, S *. They then proceeded to explain how an observer 
can project what he has seen onto the “past”, S, sphere - a “sky mapping - and how the “future” 
S- sphere provides a representation of his field of vision - the “anti-sky mapping”. The corre- 
spondence between the two spheres is given by the antipodal map (X t+ -X). Either sphere can be 
identified with the Riemann sphere on an Argand plane, and thus provides a representation of the 
complex numbers. Penrose et al. [162] showed that the properties of the Argand plane and the 
Riemann sphere reflect many of the geometrical properties of Minkowski vector space, and that a 
restricted Lorentz transformation of Minkowski space is uniquely determinable by its effect on the 
Riemann sphere (and thus null directions). The complex co-ordinate, c say, on the Riemann sphere, 
can be expressed as the ratio of a pair of complex numbers (5, r): c = l/q. A transformation of 
these last two co-ordinates on the Riemann sphere is expressible as the action of a two-dimensional 
“spin-matrix”, A, on a “spin-vector” made up of the complex co-ordinates ([, f)’ = A( r, v)~. The co- 
ordinates in Minkowski space-time are expressible in terms of t and q and their complex conjugates 
through: 

and the above 2 x 2 unitary representation of a Lorentz transformation follows. 
In this, the space-time coordinate X = o$?‘/& where Go G (l,oi), and ci are the Pauli 

spin matrices with the algebra a’oj + &a’ = 26 ij. The transformations of the spin vectors form the 
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two-dimensional complex group SL(2,C), which form a group of conformal transformations, and 
thus will map a sphere to a sphere. 

However, if we now make an arbitrary synchrony choice in each frame, a constant time slice of 
the null cone no longer gives a sphere (see Eq. (27)). Although the resulting analogues to Sk can 
still be given stereographical projections onto the Riemann plane, the transformations between these 
analogues (which are induced by generalised Lorentz transformations) are no longer conformal, and 
so cannot be represented by the spin-transformations. It follows that a spinor formalism cannot be 
used to represent the synchrony-generalised Lorentz transformations. 

In the philosophy literature, Zangari [236] claimed that the above result disproved the conven- 
tionality of distant simultaneity. His reasoning was that, in relativistic quantum mechanics, spin-half 
particles are described using the Dirac equation which is necessarily written in terms of spinors and 
spin matrices. Because the SL(2,C) spinor formalism of the Lorentz transformation cannot handle 
arbitrary synchrony, he concluded that the Dirac equation is not compatible with arbitrary synchrony. 
The existence of spin-half particles therefore to Zangari discredits the conventionality of simultaneity. 

This merely reveals the need for a revision of the spinor formalism, as for the material of 
Section 1.5.1, in handling arbitrary synchrony. Gunn and Vetharaniam [76] refuted Zangari’s thesis 
and generalised the Dirac equation to arbitrary synchrony as a straightforward adaptation of the 
standard theory [ 191. The Dirac gamma matrices may be generalised in the obvious way, using 
jY = (70, y”) = S’“,y”: 

(49) 

jY”p + jqY = &j”” . 

so that the Dirac equation, 

(50) 

(ihfp8, - m)$ = 0 , (51) 

is covariant under synchrony change. It also follows from the operator invariance in Eq. (5 1) that 
the Dirac spinor $ is unaffected by synchrony changes. This is because the components of rc/ are not 
related to four-dimensional space-time but to an independent internal spinor space. Intrinsic spin is 
an internal property of a particle, and has no bearing on such external issues as the conventionality 
of simultaneity. 

Karakostas [93] counters the Gunn and Vetharaniam [76] refutation of Zangari. Karakostas, while 
offering his own corrections to Zangari, takes an equally strong anticonventionalist line, and regards 
Einstein synchronisation as being uniquely vindicated by the inclusion of spinor structure; he believes 
that “the standard simultaneity relation is... directly imposed by independent physical phenomena”. 
This viewpoint is not borne out by all the elementary considerations aualysed above, nor by the 
following. The essence of spinorial behaviour displayed in say neutron interferometric experiments 
cannot be affected by a recoordinatisation of time. A Lorentz boost of the observer is sufficient to 
convert Einstein synchronisation into non-standard synchrony [90], but equally cannot itself imperil 
the fundamentals of spinor behaviour. The essential arguments of Gunn and Vetharaniam are not 
affected. 

Karakostas assumes such synchrony-dependent concepts as orthogonal tetrads, and (like 
Zangari) particular choices of gamma matrices which anticommute to form the (synchrony-affected) 
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Minkowski metric, as if their standard formulation is essential to physics. However the spinor for- 
malism can be integrated into general relativity without restriction on the orthogonality of tetrads. 
If his claim were true, each of any other internal symmetry (isospin, W(3), etc.) could itself be 
regarded as solving the problem of determining the physically preferred choice of synchronisation 
in an inertial frame, by virtue of the fact that only then is its standard formal description preserved. 
However, it is an axiom of internal symmetries such as the spinor group that they involve fun- 
damentally different physics, distinct from space-time symmetries. The complexities in the formal 
description which result from a synchrony change (such as a redefinition of the gamma matrices so 
as to form the synchrony-dependent metric upon appropriate commutation, as in Eq. (50)) do not 
affect the essential physics. 

2.5. Other aspects of conventionality in measurement 

2.5.1. General covariance 
Several comments on links with gauge theories were given in Section 1.4.1. In addition, we 

mention that the relationship between gauge transformations and relativistic test-theories has been 
discussed intensively. The gauge group of general relativity, the set of diffeomorphisms on the 
manifold, is commonly taken as relating to active mappings from the manifold to itself (from one 
point to another), and a coordinate transformation as passive and local, and not a diffeomorphism, 
although the active and passive transformations can be identified at a coordinate level. 

Kretschmann’s [103] discussion of general covariance as a mathematical property of any physical 
theory originated the statement that general covariance as such has no physical content. This popular 
if not universal view (see Section 1.2) denies a major role for the search for general covariance in 
Einstein’s development of the general theory of relativity. Curiously, this has spawned two almost 
diametrically opposed positions on the conventionality of simultaneity in the literature. 

On one hand, this view has been used as ammunition within an extreme conventionalist position 
to argue that the conventionality of simultaneity is mirrored in the time transformations that are a 
subset of general co-ordinate transformations. On this view it is because there is no physical content 
in clock synchrony change that one has freedom of choice of synchronization scheme [80]. 

On the other hand, an extreme anti-conventionalist view is to argue that the conventionality of 
distant simultaneity is a trivial result of the freedom in this co-ordinatization which has no effect on 
any physical consideration, and in particular has nothing to say about a basic principle (hypothesised 
in this approach for other reasons) that there is a fully determinable temporal structure in space- 
time. Following Malament, this structure is taken to be reflected in a certain method of specifying 
Einstein synchrony from considerations of causality alone (see Section 2.2.1). 

Neither of the above extreme positions is compelling. The first fails to do justice to the situation in 
the context of a theory (such as Newtonian theory) which allows infinite-speed round-trip propaga- 
tion, and thus a means of determining simultaneity in spite of general covariance. While one is free 
to choose an arbitrary temporal coordinatization, there is a clear preference for the choice of a coor- 
dinatization in which all clocks which are instantaneously comparable show the same time. Reasons 
for the clear custom of ranking the compulsions of conventions on gauge and on the relativity of 
simultaneity are discussed in Section 1.4.1. The second position is unwarranted because the implied 
hypothesis breaches the limitations of what can be measured. Any determination of space-time struc- 
ture must be empirically based; any conclusion drawn from measurements is necessarily invariant 
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of synchrony, and thus cannot single out any synchrony choice. This is demonstrated most clearly if 
the analysis is performed in the context of a mathematical formalism which is synchrony-covariant. 

The philosophy espoused in this work is that the limitation placed on measurements by the 
conventionality of distant simultaneity is not merely that which is rooted in co-ordinate freedoms; 
rather, it is the naturally occurring limitation in comparing distant clocks arising from light being 
a first signal, and the path dependence of time dilation for moving clocks that provides for under- 
determination of certain quantities. As Winnie [233] showed, convention and measurement interact. 

Zalaletdinov et al. [235] propose a subtle revision of the principle of general covariance. They 
suggest that from the geometrical point of view one must be able to distinguish between what 
is in a gauge as a result of a restriction of the diffeomorphism group on a manifold (‘active’), 
and as a result of a general reparametrisation of coordinates (‘passive’). Since coordinates are then 
viewed actively and passively, they cannot be distinguished from dynamical variables. Zalaletdinov 
et al. [235] aim to remove irrelevant ‘degrees of freedom’ (such as fictitious forces) for a given 
problem. They use restricted coordinates (coordinates preferred by the gauge), guided by a principle 
of restricted (rather than general) covariance which imposes a control on gauge choice, so that 
the coordinates corresponding to the restricted diffeomorphisms are exactly those used when the 
diffeomorphism group is so restricted, leaving only the relevant dynamical variables. The challenge 
is to formulate a selection principle which would guide the choice of an appropriate gauge, for a 
given set of physical conditions in any situation. The approach of Zalaletdinov et al. [235] suggests 
the most promising argument for an anticonventionalist position on synchrony of which we are 
aware, although details would need clarification in that context. 

2.5.2. Length conventionality 
It is not always obvious whether some quantity is synchrony-dependent or not, and the status of 

spatial measures in this context has been subject to much debate. Given the importance of spatial 
measurement in physical theory, questions of synchrony have implications in a diverse number of 
topics which are seemingly unrelated to simultaneity issues. An example of this is the Ehrenfest 
paradox, considered in Section 2.6. Another example is the relationship between the concepts of 
proper length and rest-length. Basri [12] gives a careful account of some basic issues in general 
relativity. 

An arbitrary coordinate transformation (e.g. [Sl]) will certainly introduce length conventionality 
as quickly as time conventionality. The covariant form of the simplest synchrony transformation [4] 
will make the two-way or round-trip speed of light anisotropic (see Section 15.4). 

Anderson and Stedman [5] discussed a challenge to the conventionalist position arising through 
the assignment of an operational significance to proper lengths. In a differential-geometric spirit, 
one can foliate space-time using surfaces of simultaneity. One may choose to identify distances in 
physical space with the four-dimensional space-time intervals d.s, or proper lengths, along surfaces 
of simultaneity. The result is clearly dependent on the choice of surfaces of simultaneity, and thus 
on the choice of synchrony. Such a prescription makes a numerical distinction between the “proper 
length” of a rod and its rest-length. 

Contrasting positions have been taken on such an ascription. For example, Reichenbach [178], 
while supporting the conventionality of simultaneity, considered that the proper length of a measur- 
ing rod could only be defined within a simultaneity convention, and indeed defined a characteristic 
length of a measuring rod as the proper length associated with Einstein synchronization. Nerlich has 
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written at length on synchrony issues, denying that special relativity has a natural foothold for such 
concepts [ 153,154]. Nerlich [ 1521 also considered the proper length of a rod as conventional and 
made a similar identification of a rod’s rest-length and with the proper length arising from Einstein 
synchronization, but, in a shift away from Reichenbach’s position, regarded such an identification 
as preferring Einstein synchronization. Later, Coleman and Korte [37] claimed that proper length 
(which they entitled the “spatial metric induced on a hyperplane of simultaneity”), while theoret- 
ically dependent on simultaneity convention, is in practice empirically measurable, thus providing 
an empirical determination of simultaneity relations. 

Anderson and Stedman [5,6] commented that such appeals to proper length as made by 
Coleman and KortC [37,38] in order to motivate a unique simultaneity relation are misplaced. 
Indeed, the Coleman-KortC emphasis on the empirical character of a proper length does not survive 
the simple observation that any observer using an anisotropy vector K will derive a length equal to 
another observer’s proper length, the latter observer having a relative speed KC. There can be no 
such fundamental distinction between these two kinds of length. Spatial distances can be defined in 
a synchrony-independent way, in a manner which is in accordance with the standard approach of 
general relativity, such as given by Moller [148]. That spatial distances can be defined independently 
of simultaneity choice had already been noted by Havas [81] who not only used Msller’s results, 
but also imposed a Euclidean spatial metric as a necessary requirement. 

If one were to assume that, as in the Einstein synchronization case, the two sets of metric 
components coincide, one would introduce an apparent synchrony dependence into spatial mea- 
sures. However, Moller [148] had shown that, in the context of general relativistic space-time, the 
spatial metric tensor components y;j are given in terms of the space-time metric tensor components 

gab by 

yij = gij + YiYj 9 yi$!._.& (52) 

In Einstein synchronization, yij = qij = 6,. However, in general, the metric tensor components are 
given by Eq. (27). This still preserves the result [81,5]: 

yij = i-j.. 
‘J ) ds= = dx= . (53) 

Thus, the traditional and intuitive Euclidean metric holds for any spatial distances in any synchrony 
choice, and accords with the operational approach where, under a synchrony change, the spatial 
separation of two clocks is specified before the clocks are synchronised. 

The choice of a synchrony-dependent spatial measure leads to the situation that the numerical 
value of the distance between two synchronised clocks would change if they were reset using a 
different synchrony scheme. Such a choice would be a complication if one wished to use devices 
such as rods for taking spatial measurements. 

There is indeed no special status for time here, and some work has been done on the recognition of 
conventionality in length definitions, particularly in the Russian literature, which documents another 
such range of controversies [206]. Tyapkin’s review [212] is remarkable, not least for the editorial 
disclaimers which follow it. 
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2.6. Ehrenfest paradox 

Ehrenfest’s paradox [47] concerns length contraction effects on a rigid disc which is set in rotation. 
As seen from an inertial observer at the centre of rotation, the disc’s circumference will appear 
Lorentz contracted because it is moving transversely to the observer. However, because it is not in 
transverse motion with respect to the observer, the radius of the disc will not appear contracted. 
Thus the ratio of the disc’s circumference to its radius will no longer be 27r, apparently violating 
Euclidean geometry. Einstein [50] had argued that the paradox was resolvable on the basis that 
because a rotating disc was non-inertial, its geometry was necessarily non-Euclidean. However, the 
paradox still remains in the case of an inertial observer viewing the disc, and has been considered 
by a number of authors offering a variety of solutions, which range from the purely kinematical 
to the dynamical (e.g., see [25,27,72,185]). Vargas and Torr [218] attempted to discredit the 
conventionality of simultaneity by claiming that Grnrn [72] had resolved the Ehrenfest paradox for 
the case of special relativity uniquely with Einstein synchronization. Gron’s strategy for resolving 
the paradox was to show that the motion that would realise contraction of the periphery of the disc 
is inconsistent with special relativistic kinematics. However, there is a flaw in Gron’s proof, and 
Vargas and Torr’s argument fails. Grsn considered a dust of n particles (representing the periphery 
of a disc) moving in a circular path, and found that the acceleration programme which would give 
circular motion to the dust and at the same time keep the rest length between neighbouring particles 
constant gave kinematically self-contradicting boundary conditions. However, Gram used the Lorentz 
transformation from the instantaneous inertial rest frame of an arbitrary pair of neighbouring particles 
to the inertial rest frame of the centre of the disc using the Lore& transformation, and this cannot 
be consistently achieved in a rotating frame [ 1651. 

3. Synchrony and experimental tests 

3.1. Test-theories of relativity 

3.1.1. More early history of test theories 
Although the assumptions and postulates used in the theoretical derivation of the Lorentz trans- 

formation are based on experimental evidence, there has been great interest in using experiments 
to test directly the Lorentz transformation. This has encouraged an attempt to measure quantities 
which are conventional. The two separate considerations of synchrony and the validity of special 
relativity, which are involved in this area, are often confused. 

Formulations of special relativity usually begin with the invocation of the Lorentz transformation 
to relate any two frames in relative motion. It then follows that the Minkowski metric is an invariant 
in every frame and is the chosen space-time metric. Therefore, a natural way to test special relativity 
is to postulate a parameterised deviation from it, most obviously by relaxing the constraint that it is 
the standard Lorentz transformation which links any two frames of reference. Departing from this 
standard is to deny the invariance of the Minkowski metric under a boost). This arbitrariness must 
be constrained in some way by imposing enough structure on the theory to allow useful experimental 
predictions to be made. Empirical conclusions must be drawn only within the context of these initial 
assumptions. 
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Historically, it was the fact that the Lorentz group of transformations was a symmetry group 
of electrodynamics that led to the acceptance of the validity of the Lorentz transformation for 
the description of non-gravitational physics in inertial frames. Lorentz showed, in 1904, that the 
Lorentz group was a symmetry group for Maxwell’s equations in vacuum. Although Lorentz did 
not consider his group as fundamental to nature [3], this role was realised in the following year 
by Poincare who showed that electrodynamics was covariant with respect to the Lorentz group [3]. 
Einstein cemented the fundamental character of the Lorentz group by postulating, first, the principle 
of relativity: “... that in all coordinate systems in which the mechanical laws are valid, also the same 
electrodynamical and optical laws are valid . ..” [48] and, second, the constancy of the one-way speed 
of light in vacuum (independent of the motion of the source), in all inertial frames. 

The necessity of Einstein’s second postulate has been removed as far back as 1911, according to 
Berzi et al. [ 181. The isotropy and homogeneity of space-time show that the transformations have 
the properties of group elements, and yield the Lorentz and Galilean transformations (and anything 
in between, i.e. with any value for the limiting speed including the Einstein value of 299 792 458 m/s 
and the Galilean value of infinity) as the only possible candidates for relating one inertial frame 
to another [ 18,117,118,92,42]. The relativity principle then gives reciprocity. With this approach, 
the physical difference between these two theories manifests itself in the presence of a parameter 
identified as the limiting speed for matter. The Galilean transformation results when this limiting 
speed is taken to be infinite; in general the Lore& transformation holds. This distinguishes two 
concepts: the speed of light and the limiting speed of matter [ 1171. In the THE@ test theories this 
distinction is exploited to justify experimental tests of the equivalence of these speeds [64,231]. 
Using a different approach again, Lalan [ 113,114] derived the Lorentz transformation without using 
the relativity postulate or reciprocity. Requiring the usual conditions of spacetime homogeneity 
and isotropy of space, he demanded that the transformations formed a parity-invariant group which 
preserved causality, and arrived at the Galilean and Lorentz groups of transformations [114]. 

3.1.2. Robertson’s test theory 
Robertson [183] attempted to infer the Lorentz transformation from experimental observation. His 

test theory of special relativity had a major influence and in turn motivated the influential Mansouri- 
Sex1 test theory [ 133-1351. Robertson, with a similar emphasis to Einstein’s on the “resting f?ame” 
(see Sections 1.1, 1.3.2, 1.5.4), started with a postulated rest-system endowed with a Minkowskian 
metric, in which light propagated rectilinearly and isotropically. This rest-system was endowed with 
“preferred” (convenient) physical properties and all analysis was carried out with reference to this 
frame when physical predictions were made. Assuming isotropy and homogeneity of spacetime, 
Robertson considered a linear transformation (with unknown parameters) linking the rest-system 
to an arbitrary moving (laboratory) frame. The number of parameters was reduced by making 
various physical and operational demands. Values were then found for the remaining parameters 
(as functions of the relative speed of the two frames) by an intricate appeal to the results of the 
Michelson-Morley, Kennedy-Thorndike, and Ives-Stillwell experiments. 

On Robertson’s approach, the empirical observations from these experiments are translated into 
axiomatic statements about kinematical behaviour which then give exact functional values for the 
parameters in the arbitrary transformation. Experimental uncertainty and the continuous nature of 
the parameters were not taken into account to give ranges for the parameter values. In effect, 
observations from a small number of experiments played the same qualitative role in Robertson’s 
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test theory as symmetry-related or group-theoretic constraints played in formal derivations of the 
Lorentz transformation. The more usual approach is to use different experiments to constrain the 
range of values that test theory parameters can take. Unlike Mansouri and Sexl, Robertson did not 
have a candidate for the hypothesised rest-frame with a status comparable to the cosmic microwave 
background [ 1631. In addition, Robertson was not attempting to put tolerances on the coefficients 
in the Lorentz transformation. 

Robertson’s use of a linear transformation ensured that the one-way speed of light is isotropic 
in all inertial frames. Even in the moving frame S, Robertson explicitly states that the Einstein 
synchronisation scheme he uses to synchronise each clock in S against the clock at the origin will 
give Einstein synchronisation in the sense of Section 1.1 for any path in S. However to Robertson, 
prior to an appeal to the Michelson-Morley experiment, the reciprocal value of light speed so defined 
may itself be dependent on the direction of the path. Since Weyl’s Erfahrungstatsache assumes a 
similar significance to the Michelson-Morley experiment, it differs in status from the axioms of 
Einstein and Reichenbach; see the discussion in Section 1.1. In any case all such positions differ 
from the dual observer of Section 1.5.4 who also has an anisotropic round-trip speed of light, yet 
is compatible with the Michelson-Morley experiment. 

Within Robertson’s approach, however, Einstein synchronisation is therefore built into the “ob- 
servational” derivation of the standard Lorentz transformation (as opposed to the generalised ver- 
sion of Section 2.3.1) which in turn predicts isotropic one-way light propagation in all inertial 
frames. Without the initial assumptions which invoke Einstein synchrony, the isotropy of the one- 
way speed cannot be obtained from the isotropy of the two-way speed. This limitation has been 
noted by, amongst others, Vargas [217], and Maciel and Tiomno (see, e.g., [128,129]). In revising 
the Robertson test theory, Vargas [217] claims to obtain the Lorentz transformation using the same 
three second-order experiments considered by Robertson, but without making any assumptions about 
convention. However, both Robertson and Vargas suppose that light propagates isotropically in the 
“rest” frame used as a reference for physical analysis of the “moving” frame. 

3. I .3. Mansouri-Sex1 test theory 
Mansouri and Sex1 [ 133-1351 developed a test theory which refined and extended Robertson’s 

test theory, allowing synchrony to be varied in the laboratory frame. They claimed to analyse 
first-order experiments as well as those of second order, and discussed the manner in which a 
variety of experiments constrained the parameters in the theory, and also motivated the experimental 
comparison of slow clock transport and Einstein synchronization as a test of special relativity. Their 
test theory has been a very popular choice as a foil for special relativity, for example in the analysis 
of experimental tests as those of Riis et al. [ 1801 and of Krisher et al. [ 1 lo]. 

With the cosmic microwave background now an obvious candidate, allowing quantitative evalua- 
tion of some parameters of the theory, Mansouri and Sex1 postulated an aether (or preferred) frame, 
Z to serve as the rest-system in which (significantly) the speed of light was isotropic and equal to 
c, and that the equality in C of measuring devices of differing composition implied their equality in 
all inertial frames. Assuming homogeneity of space-time, they derived a linear transformation from 
Z (with space-time coordinates cz, r) to the laboratory frame S with coordinates ct, x of the form: 

dt=adr+s.dx/c, 

dx = b . (d<-u dr) . 

(54) 

(55) 
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Mansouri and Sex1 used capital Roman letters for r,& we use SI units and have made all model 
parameters dimensionless. n is the velocity of S with respect to C. a is therefore a time dilation 
parameter, the variation in the laboratory clock increment dt for given preferred frame increment 
dz given that the laboratory clock is fixed in that frame (dx = 0). b is similarly a length contraction 
matrix, which is diagonal when the axes are aligned (and with ti 1) 2): b= diag(/?,6,6). 

Unlike Robertson, Mansouri and Sex1 make no assumption about the speed of light in the sec- 
ond frame; the vector parameter E - which otherwise bears no connection with the Reichenbach- 
Griinbaum parameter E of Eq. (9) - varies with synchrony choice. Mansouri and Sex1 investigated 
the functional values a would take (we call them &E and E T, respectively) under Einstein synchro- 
nization and slow clock transport. The theoretical framework is sufficiently general to make these 
two schemes inequivalent synchrony methods: 

( -av 

+ = p41 _ qc2)’ O, O 
> 

’ 

aT=($$ 0,o) . 

(56) 

(57) 

Agreement of slow clock transport and Einstein synchronization was then taken to require that 
as = aT and so that the time dilation parameter must take on its standard value a = dw, thus 
pinning down a parameter in the Lorentz transformation. Experimental evidence for the equivalence 
of slow clock transport and Einstein synchronization to some precision was then taken to bound 
any possible deviation of a from this value. For this purpose a was expanded in even powers of 
v/c: a = 1 + av2/c2 + . . . , the first (second-order) parameter CI then eventually being constrained to 
the expected value -0.5 to within experimental error. 

The particular results for the one-way speed of light in S arising from differing synchrony conven- 
tions are easily obtained by substituting the corresponding values of E into the synchrony-generalised 
Mansouri-Sex1 test theory. The light speed is given by [222] 

c/c(p) = E .p + a(dy2 + k) , (58) 

d(p) s b-'p . (u/c + (1 - K. U/C)K) , (59) 

l/y2 3 (1 - K . u/cy - v2/c2 . (60) 

In particular, when Einstein synchronization is chosen, a takes on the value -a dy2, cancelling 
out any linear dependence on direction and hence on sense. However the term ak contains squares 
of direction-dependent terms, as can be seen from Eqs. (58)-(60). 

As Mansouri and Sex1 [133] showed, with Einstein synchronization the degree of this direction- 
dependence is governed by the length contraction factors and is independent of a. However, the 
opposite is true if slow clock transport is used: Mansouri and Sex1 give, to first order in velocity, 
an appropriate equation for the one-way speed of light in S. This takes the form [ 133, Eq. (6.16)] 

c( 0) = c - u( 1 + 2a) cos 8 ) (61) 

where 0 is the angular deviation from the x-axis. Since this apparently shows a potential direction- 
dependent speed of light, Mansouri and Sex1 conclude from here that the “one-way velocity of light 
is a measurable quantity in this case”. However, any measurement in this situation is contingent 
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upon the prior assumption of slow clock transport and so the implied choice of one-way light speed. 
Although slow clock transport synchronization can differ from Einstein synchronization and so yield 
anisotropy in the one-way speed of light, this is a formal link only, and not on that account an 
objectively measurable quantity. 

3.1.4. Mansouri and Sexl’s interpretations 
The main problem in this analysis is that of interpretation: to imagine that one has indeed exper- 

imentally, empirically or objectively verified some gauge-dependent formula. The presumed absence 
of a first-order term in the expansion of the time dilation factor in u/c should be contrasted with the 
more general form of Eq. (15), where a linear term is essential. The assumption of isotropy in C is 
responsible for the lack of generality of the Mansouri-Sex1 formalism and underlies this common 
deficiency of interpretation. If this is borne in mind, there is no problem with the Mansouri-Sex1 
theory; the isotropy assumption in Z is economical in helping to reduce the parameters of the theory. 
A simple resolution of the matter is to accept the Mansouri-Sex1 formalism with this caution. 

However in practice the more far-reaching consequences of such assumptions, as illustrated in 
Section 1.6 for example, have been ignored or denied to the point of major confusion of the 
literature. In the second paper of their series (on first-order tests) Mansouri and Sex1 [ 1331 explicitly 
rejected Karlov’s [94-961 interpretation of the Romer experiment, which in fact correctly handled 
conventionality issues. Hence, as stated in Section 1.3.2, the correct interpretation of the Mansouri- 
Sex1 test theory was obscured at the very start of its historic and continuing reign. 

This has seriously compromised the validity of the conclusions drawn by the original authors and 
by all subsequent users of their test theory. For example, Mansouri and Sex1 considered experiment 
to confer a special status on slow clock transport synchrony. It might rather have been argued that 
because slow clock transport synchrony has the potential to disagree with Einstein synchrony in the 
Mansouri-Sex1 framework, its claim to fundamental status has been lessened rather than strengthened 
as a result of their work. As it is, their claims have been widely accepted and the conventional 
content suppressed. The empirical status of the one-way speed of light itself has been “deduced”, by 
Mansouri and Sex1 themselves, and by many others (see Section 3.3). Similarly, the common claim 
here and elsewhere (see the references on past debates in Section 1.3.2) to “first-order” tests, which 
are closely related to the claim of the measurability of one-way anisotropies, are seriously flawed. 

In the remainder of this subsection, we work through in more detail what Mansouri and Sex1 
might have attempted to accomplish. In Section 3.2 we review a revised theory [222] which makes 
all synchrony dependence explicit and, in thus illustrating a more nearly gauge-invariant approach, 
avoids these interpretative errors. 

Though not of pivotal significance in this general context, it may be helpful to note some of 
the inadequacies in the Mansouri-Sex1 attempt to rebut Karlov. These points illustrate the kind of 
changes that are necessary for a correct formulation of the problem. In Karlov’s special relativistic 
version, Jupiter and the Sun are at rest in an inertial system, and an observatory on Earth measures 
the delay in reception of periodic signals from Jupiter as the Earth orbits the sun. The result 
z, - 7; M d/c is deduced, where the left hand side is the cumulative delay of signals relative to the 
expected time and d is the diameter of the Earth’s orbit. It is then helpful to regard the observer’s 
time measurements as equivalent to those from a network of slow-transport-synchronised clocks, 
the Earth’s velocity being considered only to first order, giving the resolution of Section 1.6. In the 
version considered by Mansouri and Sexl, the Earth is at rest in S, but moving at a velocity u with 
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respect to the aether frame C. Jupiter and the associated clock (its moons) orbit the Earth. Mansouri 
and Sex1 [ 1341 use their result for the one-way speed of light resulting from the use of slow clock 
transport (Eq. (61)) h w ere 8 is the angle between the direction of the light and to the velocity u of 
S with respect to C. On this model, all measurements are made using one clock stationary in S; it 
would therefore have been more appropriate to use the more general Eq. (6.15) [133] (note that in 
this equation, as well as in Eq. (6.17) of the same paper, d* should be read as de*), which has in 
it the unknown synchrony parameter E (whose functional dependence on the parameters a, b, and d 
is governed by synchrony choice). Then their analysis of Romer’s experiment would not yield their 
stated result, unless a synchrony assumption is made. In addition the expansion of a by Mansouri 
and Sex1 is not restricted to even powers of v/c for non-Einstein synchronization in the rest frame. 

In the second of the first order tests Mansouri and Sex1 consider a rotor experiment in which a 
rotating source and absorber are equidistant from, and on opposite sides of the point of rotation, 
with which they are collinear. Mansouri and Sex1 modify an equation derived by Maller [147] for 
the Doppler effect in classical aether theory, adapting it to their theory by replacing the Galilean 
expression for the speed of light (c(0) = c - n. u) by the expression derived in [ 1331 for the slow 
clock transport speed of light, c(0) = c-( 1 +a)n . u where n is the direction of light propagation from 
source to absorber, and v the velocity with respect to C of the centre of rotation. The Mansouri- 
Sex1 formula v/v0 = 1 + 2( 1 + 2a)u. u/c’ (where u is the instantaneous velocity of the absorber) for 
the ratio of the detected frequency to the emitted frequency predicts a non-null result for transverse 
Doppler effects unless the time dilation parameter approaches the special relativity value (the special 
theory of relativity predicting no frequency shift; see Misner et al. [143, p. 631). It is appropriate 
to use the slow clock transport formulae for the rotor situation because the ends of the rotor, at 
which measurements are being made, are moving slowly with respect to the inertial frame of the 
rotor centre. The rotor experiment supports the validity of special relativity, but cannot determine 
either the time dilation factor (because this is dependent on the conventional assumption of Einstein 
synchronization in the aether frame) or the one-way speed of light in the moving frame, because 
this is again conventional, the choice of slow clock transport being conferred by the experimental 
set-up. 

In the third paper of the series, Mansouri and Sex1 [ 1351 analyse the Kennedy-Thorndike and 
Michelson-Morley experiments. These second order experiments involve to and fro light trips, and 
hence synchrony does not enter into the analysis of these experiments. As in their analysis of 
Romer’s experiment, Mansouri and Sex1 impose a synchrony choice in Z:, choosing Einstein syn- 
chronization by using Eq. (6.17) of [133]. For them then to regard measurements of the isotropy of 
the return trip speed of light as giving an indication of the isotropy of the one-way speed of light 
is simply unjustified. 

It is interesting to note that the philosophy espoused by Mansouri and Sex1 [ 1331 evolved from 
the starting position of acknowledging the conventionality of simultaneity to the opposing position 
that the each theory has associated with it a uniquely determinable synchrony convention. The 
vector E links the synchrony choices in Z and S, and this conventionality excludes its measurement, 
although its functional form within a synchrony choice can be evaluated. Similarly the parameters a 
and b are dependent on the conventionality in C and so are determinable only within a synchrony 
convention. Rather than values for test theory parameters defining a unique synchrony, the values 
for the parameters are determined only after a synchrony is defined. The complications arising with 
conventional parameters when making approximations in analyses are dealt with in section 3.3. 
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Mansouri and Sex1 [ 1331 and Mansouri [ 1361 acknowledged the conventionality of synchroniza- 
tion in a laboratory Came S through the introduction of their parameter e. The (logically distinct) 
conventionality of synchronization in the preferred frame Z is of equal significance. Mansouri and 
Sex1 [133] simply chose Einstein synchronization in Z. While such gauge fixing is perfectly accept- 
able in analysing experiment, it obscures the conventional content of the formalism, in particular 
that of the claim to test the isotropy of the one-way speed of light. The Mansouri-Sex1 e is not 
purely dependent on synchrony choice in S, but also on that of Z, as is shown in Section 3.2, where 
the Vetharaniam-Stedman [222] generalization of the Mansouri-Sex1 test theory is discussed. 

3.1.5. Following developments 
Maciel and Tiomno [ 128,129] consider that many of these test theories are, in fact, special relativ- 

ity “in different coordinate systems” because they agree kinematically with special relativity. Indeed, 
Mansouri and Sex1 describe under the heading “Relativity without relativity” the transformation 
1133, Eq. (4.111, 

dt=(l - v2/C2)1’2dT, 

dx = (1 - ~~/c~)-*‘~(dX - v dT) (63) 

as corresponding to an aether theory which is kinematically equivalent to special relativity. Events 
which are simultaneous in one frame are simultaneous in the other: dt = 0 Z$ dT = 0. The kinematic 
equivalence is seen by noting this transformation can be derived from the standard Lorentz transfor- 
mation by the synchrony transformation t --$ t + KC/C’ where v is the relative speed of the frames in 
Einstein synchronization. To equate the former of the two transformations with an absolute frame 
theory, and the latter with special relativity is to misunderstand the role of conventionality. 

However, Maciel and Tiomno [128,129] seem to take exception to the use by Mansouri and 
Sex1 of special relativistic values of time dilation and length contraction factors in such an “aether” 
theory. This criticism is unjustified; e.g., one Lorentz aether theory discussed by Erlichson [58] is 
compatible with the Lorentz transformation, although it subscribes to a preferred frame. Spavieri 
[197] also mistakenly regarded simultaneity conventions as distinguishing theories. Mansouri and 
Sex1 also reach our conclusion of the indistinguishability of the above two theories, although for 
reasons other than the immeasurability of the one-way speed of light. The function of the Mansouri- 
Sex1 type of test theory is not so much as a test for a preferred frame as a test of Lorentz invariance. 

3.1.6. Later development of the Mansouri-Sex1 test theory 
Both the Robertson [ 1831 and Mansouri-Sex1 [ 1331 test theories are restricted to comparing frames 

in uniform motion with respect to a preferred frame. Although this is a satisfactory arrangement 
for many situations, certain experiments (such as the two-photon absorption experiment of Section 
3.3.1) require a more general framework in order that they be more accurately modelled than the 
Mansouri-Sex1 test theory would allow. This limitation was recognised by Abolghasem et al. [2] who 
extended the Mansouri-Sex1 formalism, deriving a transformation from an inertial, aether frame to 
a constantly rotating frame. These authors also investigated Einstein synchronization and slow clock 
transport in rotating frames, arriving at the result that, as is the case in inertial frames, those two 
synchrony change schemes are equivalent only if special relativity holds true. Such an equivalence 
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does not imply a preferred synchrony scheme for the same reasons that a similar equivalence in 
inertial frames would fail to establish a unique simultaneity relation: the equivalence of the two 
holds within any synchrony change scheme, and cannot be used to falsify any particular convention. 

While the Abolghasem et al. theory extends the work of Mansouri and Sex1 [ 1331 to rotating 
frames, it also neglects the conventionality of simultaneity in the aether frame, thus again suppressing 
the conventionality of the test theory parameters. The test theory in Section 5.2.1, developed from 
differential geometric methods by Vetharaniam and Stedman [224], incorporates arbitrary, space- 
varying synchrony change in all frames, and also allows the laboratory frame to exhibit arbitrary 
non-inertial motions. The synchrony extension in this last test theory sheds light on the operational 
significance of the various parameters in the Mansouri-Sex1 test theory; the generality of the motions 
allowed enables more accurate modelling of experiments. 

3.2. Recasting of the Mansouri-Sex1 test theory 

The conventionality of the one-way speed of light is shown below by recasting (both correcting 
and generalising) the Mansouri-Sex1 test theory for general synchrony choice in Z as well as S. 
This is developed to verify that the results of experiments (e.g., [180,1 lo] which involve a local 
comparison of synchronization convention [64]) are not affected by gauge fixing. 

We generalise Eqs. (54), (55) as 

dt”=a”di+&dx/c, (64) 

dx = 6 . (d& - Cd?), (65) 

where much as before C is a preferred frame with space-time coordinates c,? = r - x0. {, and 
the laboratory frame S has coordinates X, t”= t - K . x. Tildes denote that terms are now explicitly 
synchrony-dependent through the choice of the synchrony vectors ICY, K in C and S, respectively. For 
example, since v” is the velocity of S as measured in Z, it is of the form of Eq. (10): v”= u/(1 -rco.v/c). 
A comparison of Eqs. (54), (55), (64) gives (as in Vetharaniam et al. [225] with some misprints 
corrected) 

a 

a= I-Jc.r@ 
(66) 

i.p=&*p+ 
ab-’ .p.lc 

1 - 1c . v/c ’ 
(67) 

b.p=b.p-(=p)b.v, 

6-l .P=b-’ .p+ 
K . b-’ .p 

1 -K.U/CU’ 

for any vector p. One may also compare Eq. (64) with Eqs. (39), (40). 
Mansouri and Sexl’s demonstration that slow clock transport and Einstein synchronization can 

disagree within their generalised parametrization can itself be generalised [225]. Slow clock transport 
requires 

(70) 
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where q = K . C/i?. Einstein synchronization requires [225], 

& .p= _;g-’ (1 +rc*U”)rc+U” 

*‘(l+ K . a>2 - 3 * (71) 

Eqs. (70), (71) show that in general, slow clock transport and Einstein synchronization produce 
different simultaneity conventions. Equating the two corresponding values of E gives a differential 
equation whose most general solution [225] is equivalent, as it should be, not to the standard time 
dilation factor but to the explicitly conventional and generalised formula of Eq. (29): 

(72) 

Despite the apparent K dependence of Eq. (71), the synchrony convention in S is independent of 
K; I?, &, K and a” are measured in C. 

3.2.1. Power law expansions and synchrony independence 
One synchrony-related aspect in experimental analysis which has considerable potential to mislead 

is the making of approximations, when consistency with regard to synchrony is often difficult to 
achieve. Unless all approximations are independent of synchrony choice, misleading results may be 
obtained, and a synchrony-dependent approximation may disguise the synchrony-invariance of mea- 
surable quantities. This is the case both with Mansouri and Sex1 [ 1331 and with Will [230], who make 
approximations to first or second order in a speed which is measured using a given synchrony scheme 
involving an arbitrary E, referring to the speed as small. The Mansouri-Sex1 formulation contains 
an expansion in powers of a velocity which is synchrony dependent (on the choice of gauge in S). 
Isolating individual terms in such an expansion immediately introduces a lack of synchrony invari- 
ance into analyses, and can be justified only if the gauge is fixed in the reZeumt frame (with the 
result that conventionality is obscured). For example, using the Mansouri-Sex1 expansion, Will [230, 
Eq. (3.5)] gave an expression of the following form as an approximation of A’(u), the time dilation 
factor for a frame S’ moving at velocities u and W in S and Z, respectively: 

(73) 

Note that the symbols in this equation have been translated from Will’s notation into the notation 
of this section: Will’s w and v in his paper correspond respectively to the V and s conventions used 
by Mansouri and Sex1 and adopted here. The quantity p is the length contraction in the direction 
of V. Will derived his expression by approximating to first order in u, which is dependent on 
the synchrony E in S. It is easily seen that the left hand side of Eq. (73) is independent of E 
because it contains just the time dilation factor for S’ as measured in X. However, the right hand 
side of that equation contains the velocity u, which is intriniscally dependent on a because u is 
measured in S. Now, none of the other quantities in the equation are dependent on E, and so the 
right hand side is a-dependent. Will’s equation suggests that an observer in C can, by making 
measurements, determine a “true” synchrony for S. This would be physically impossible, and the 
disparity in the expression is the result of failing to maintain synchrony-invariance throughout a 
calculation. It is also the case that a speed which is small in one synchrony scheme may be very 
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large in another, and thus if one is dealing with arbitrary synchrony, it may be inappropriate to 
make an approximation to first-order in velocity. A synchrony-independent Taylor’s series expansion 
of a(w) about u is possible; the terms in the expansion will vary differently from each other under a 
synchrony transfotmation in Z. So an approximation to a(w) may not exhibit the same synchrony- 
covariance as a(w). This discrepancy is unavoidable in such an approximation. However it is minor 
in its effect when compared with the inappropriate introduction or deletion of synchrony-dependence 
on only one side of an equation: the rc-dependence of a - and hence its conventionality - has been 
preserved while at the same time no spurious synchrony-dependence has been inserted. A fuller 
analysis is given in Vetharaniam et al. [225]. 

3.3. Recent experimental “tests of special relativity” 

The test theories produced by Robertson [183] and Mansouri and Sex1 [ 1331 have motivated 
many experimental tests of various special relativistic predictions in the sense that these test the- 
ories (or modifications of them) are used as a framework for analysis. Most currently available 
physical interpretations of the results of such experiments erroneously attribute a measurable status 
to the conventional quantities in the test theory being used; authors may acknowledge a role to 
conventionality, and then embrace an interpretation which effectively denies its role. This follows 
the precedent set explicitly by Mansouri and Sex1 [ 1331. 

MacArthur et al. [ 1271 analyse (within the Robertson formalism) an interesting experiment in 
which a beam of hydrogen atoms in their ground state is intersected at a variable angle 8 by an 
ultraviolet laser beam whose ionization effects on the hydrogen atoms are measured. The ratio of 
the energy of the laser beam as seen by the atoms to its rest frame energy is obtained by the 
authors to be proportional to (1 + B cos 0) where by varying the angle 8 of intersection of the two 
beams, one can test the sinusoidal variation predicted by the authors. This is not a test of special 
relativity because this variation is universally predicted. The authors acknowledge the Mansouri 
and Sex1 test theory, but chose to work in Robertson’s less comprehensive test theory. Presumably 
MacArthur et al. [ 1261 follow MacArthur [127] who considers the test theories of Robertson [ 1831 
and Mansouri and Sex1 [ 1331 equivalent on the grounds that Einstein synchronization in both frames 
of the Mansouri and Sex1 test theory produces a test theory which can be identified with Robertson’s. 

Robertson [ 1831 assumes isotropy of light in the moving frame; Mansouri and Sex1 [ 1331 make 
no such assumption. Maciel et al. [128,129] also dismiss the handling by MacArthur et al. [127] of 
absolute time for the Doppler and lifetime experiments: whereas the test theories being discussed 
provide an “aether” transformation from a generally non-accessible preferred frame to an arbitrary 
one (requiring one, when considering two different moving frames, to transform from one to the 
other via the preferred frame), MacArthur [ 1271 (and also [ 1261) use the aether transformation to 
link directly two accessible frames (for example the laboratory rest frame and rest frame of atomic 
beam). 

Mansouri and Sexl’s erroneous belief that the one-way speed of light could be measured empiri- 
cally in applications of their theory has been inherited by a surprising number of good physicists. 
We mention Vargas [217], also Will, Krisher and coworkers [ 108,110,229,230]. Riis et al. [ 1801 
title their paper “Test of the isotropy of the one-way speed of light...” and Gabriel and Haugan [64] 
retain similar terminology. Such literature has played a considerable part in publicity within the last 
decade (see [ 184,78,229,173,199,171]) of modem tests of relativity. 
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For example, the Mansouri and Sex1 formalism was used as the theoretical framework in which 
experiments are analysed by Hils and Hall [85] who describe an improved Kennedy-Thorndike ex- 
periment (using an interferometer with unequal arm lengths to search for sidereal variations between 
the frequencies of two lasers locked to different references); Einstein synchronization is assumed 
through the choice of their expression for the one-way speed of light [ 133, Eq. (6.17)]. The authors 
state that this experiment allows purely experimental determination of the Lorentz transformation, 
when in fact the dilation and contraction parameters in the Lorentz transformation are dependent 
on the synchrony choice in the aether frame, and E (the moving frame’s synchrony vector in the 
Mansouri and Sex1 formalism) is also a conventional quantity. 

Kaivola et al. [91] claim to have measured the relativistic Doppler shift for neon. Their experiment 
actually compares the frequency difference between two lasers, one locked to a two-photon absorption 
transition in a fast beam of neon, the other to the same transition in thermal neon. A similar exper- 
iment is performed by Riis et al. [ 1801 who look for sidereal variation in the frequency difference 
of a rotating and a stationary laser locked to the resonant frequencies of two-photon absorptions in 
(different) atomic vapours. It is maintained that the measured frequency variation gives a restriction 
on the anisotropy of light propagation. The claims made by Riis et al. [180] have already been se- 
riously disputed (see [ 13, lSl]), and for good reason; all experimental measurements are compatible 
with all synchrony schemes and hence cannot differentiate between different synchrony conventions. 

Will [230] stated that a direct measurement of the absolute value of the speed of light in S between 
two points will depend on the synchronization of the clocks, but that “a test of the isotropy of the 
speed between the same two clocks as the orientation of the propagation path varies relative to Z 
should not depend on how they were synchronized. . ..” Will also stated that experimental results 
should not depend on synchronization procedures, so one would understand that the measurables in 
the test referred to above are of a synchrony-invariant nature. 

Like Mansouri [ 1361, Will noted that observables cannot be affected by synchrony choice within 
the laboratory frame. He accepted that a measurement of the one-way speed of light in the laboratory 
frame using “a time-of-flight technique” between two clocks is synchrony dependent, but stating 
that “ . . . a test of the isotropy of the speed between the same two clocks as the orientation of 
the propagation path varies relative to Z should not depend on how they were synchronized, . ..” 
he maintained that this allows a determination of the isotropy of one-way light speeds. However, 
this argument neglects the effects of a synchrony choice, within the Mansouri-Sex1 test theories or 
even within special relativity, on the cumulative time dilation experienced by a slowly transported 
clock [222,233]. The net change in synchrony change induced under slow clock transport is itself 
synchrony dependent in such a way as not to affect experiment. It is precisely synchrony invariance 
which prevents an experimental determination of conventional quantities. 

Will attempted to distinguish a measurement of the value of the one-way speed of light from a 
test of the isotropy of the one-way speed of light, claiming that the former is conventional, but that 
the latter is not, and is measurable. This claim is unsustainable; one cannot hope even to test the 
isotropy of the speed of light without, in the course of the same experiment, deriving a one-way 
numerical value at least in principle, which then would contradict the conventionality of synchrony. 

Vetharaniam et al. [223] illustrated this by considering a triangle ABC of paths (Fig. 9). If we 
can assume with Will that the average speed of light on any round trip (for example cABA) is c, and 
the speed of light is isotropic at each vertex, it follows that cAB = cAC = cBC = CBA where we have 
used isotropy at A, C, B, respectively. Hence since the one-way light speeds on any path are equal, 
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Fig. 9. If the one-way speed of light is isotropic at any point, it is also reciprocal along any segment. 

(CAB = CBA, etc.) each must be equal to c. An independent and objective test of isotropy cannot 
therefore be possible. All experiments based on a comparison of slow clock transport and Einstein 
synchronization will, according to special relativity, confirm the apparent isotropy of the one-way 
speed of light. As an experimental test of special relativity, this is a highly significant result, but as 
a test of the isotropy of the speed of light it is an illusion. 

Several of the experiments mentioned in Section 3.1.1 are analysed by Will [230]: the two-photon 
absorption, maser phase, Mossbauer-rotor and rocket-redshift experiments. Will pointed out that 
these experiments have the potential to set bounds on Lorentz-violating, preferred-frame, alternative 
theories to special relativity. Some incorrect claims for these important experiments as well as some 
general synchrony considerations are revised in Sections 3.3.1 and 3.3.2 following Vetharaniam et al. 
[223]. 

Will [230] also analysed similarly two other experiments - a rocket red-shift experiment [221] and 
a Mossbauer rotor experiment [28]. These are not re-analysed here, since the examples we discuss 
should be adequate to clarify the points at stake. However we indicate a synchrony-related point on 
Will’s model for the Mossbauer rotor experiment. In this experiment, an absorber is positioned at 
the centre of a rotating disc, and measurements are made of the change in transmission of gamma 
rays through the absorber as a function of the propagation direction of these rays from an emitter 
placed on the rim of the disc. Will assumed that the disc rotates rigidly in the laboratory frame. 
This is unjustified, because Will’s approach logically demanded the use of an arbitrary synchrony 
convention, in which a body which rotates rigidly according to some synchrony convention does 
not preserve the same rigid orientation according to another (see Section 1.6). All assumptions 
one makes must be synchrony invariant when one is dealing with arbitrary synchrony. The model 
Will uses for the maser phase experiment is appropriate for the Miissbauer experiment, because that 
model does not assume rigid rotations of a disc, and its assumptions of relative motions are manifest 
in the Miissbauer experiment. 

Since the analyses of the results of the experiments mentioned above do not take into account 
synchrony considerations in the hypothesised preferred frame, it is not explicitly obvious that the 
dilation and contraction factors (the parameters a and b in the Mansouri and Sex1 test theory) are 
dependent on the synchrony choice in the aether frame [222] and thus definitely not measurable, in 
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contrast to the claims of MacArthur et al. [126], Hils and Hall [85], Kaivola et al. [91] and Krisher 
et al. [ 1 lo]. As a consequence of this, the Lorentz transformation is not inferable by experiment. 
And although synchrony choice in the preferred frame does not affect the results of experiments 
in the moving frame, one should be aware that these results themselves may be dependent on the 
conventionality in the moving frame in a way which is not immediately transparent. For example, 
the choice of experimental set-up can induce a synchrony convention which is reflected in the result. 
This is the case in Romer’s experiment, where in effect slow clock transport is used, as discussed 
in Section 3.1.1. 

Thus the parameters in the frame transformation may be estimated only within the Einstein syn- 
chronization “gauge” in the preferred frame; the one-way speed of light is isotropic within the 
Einstein synchronization gauge in the moving frame (and within the slow clock transport gauge in 
special relativity). Attempts to experimentally disprove non-Einstein synchronization per se are fu- 
tile because [227] non-Einstein synchronization simply corresponds to a change of coordinates and, 
by covariance of physical laws, must be compatible with any experiment compatible with standard 
synchrony. 

3.3.1. The two-photon absorption experiment 
The two-photon absorption experiment performed by Riis et al. [ 1801 involved a beam of fast 

atoms travelling collinearly in a laboratory frame with two counter-propagating laser beams, both 
produced by one laser. Both beams have the same frequency in the laboratory frame in which 
the laser was at rest. The frequency of the laser was continually varied (if necessary) to maintain 
resonance in a two-photon transition between two energy levels of the atoms via an intermediate 
level, the velocity of the atomic beam being adjusted for resonance in the intermediate state. The 
variation in laser frequency v required to maintain resonance in the two-photon transition was 
recorded. The constraints on the parameters in the transformations, given by a null variation in 
v are examined below. In a fully realistic model, the laboratory frame, S, should be accorded 
variable, non-inertial motion owing to the rotation of the Earth, and the atomic beam should be 
taken as stationary in S. This was originally simplified so that in the Mansouri-Sex1 formalism, S 
was taken to be in uniform motion with respect to C. 

Consider an atom with rest frame 5” moving at a velocity u with respect to the laboratory frame S. 
It interacts with two collinear, anti-propagating laser beams which have the same frequency in S, 
where the laser beams and atomic velocity u are all collinear. Let the atom have three states A, the 
initial and ground state, and higher states B, C with energies EA < EB <EC. The two laser beams 
(which, in the atom’s frame, experience different Doppler shifts) provide the required energies for 
the transitions A-B and B-C. The laser frequency was continually varied to maintain resonance, 
and this frequency was examined for a diurnal dependence. 

For the atomic transitions to resonate, the frequencies v> and v’_ in S’ of the two laser beams 
must be the frequencies associated with the atomic transitions from the initial to the intermediate 
state and then to the final state: v: = (Es - EA)/fi, v’_ = (EC - EB)/fi, or vice versa. If v* are the 
corresponding frequencies in S, they are related to the corresponding frequencies in the atomic rest 
frame by 

v+ = $$(I - & * u>v; . (74) 
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But, in S, both f beams have the same frequency v. This leads to a relationship between the various 
frequencies, velocities and factors [225] which is found to be consistent with 

a”(v”)=l/Yz t/(lfK.V”)V, (75) 

or Eq. (29) for the special relativistic time dilation in arbitrary synchrony, and with the synchrony- 
independence of the (locally measured) frequency v. Thus any experimental test for a diurnal variation 
of v cannot measure the time dilation parameter a” uniquely, because the latter is synchrony-dependent. 
Experiment can restrict time dilation only to a class of functions which are related by Eq. (66). 

3.3.2. The maser phase experiment 
In the maser phase experiment of Krisher et al. [l lo], which Will referred to as the “JPL” 

experiment, two distant masers (which both output the same rest frequency of 1OOMHz) situated 
at either end of a highly stable 29 km fibre optic cable simultaneously send signals to each other. 
The geometry of the Goldstone Deep Space Communications Complex is described in Krisher 
et al. [107-l lo]. An analyser is situated at each end of the fibre-optic cable. Each analyser is used 
to compare the phase of the incoming signal with that of the outgoing signal. The observable in 
this experiment is the relative variation in the phases of the arriving signals. No diurnal variation 
in this observable was seen. 

Krisher et al. [108] (and later Will [230]) claimed that this experimental result constrains the 
(one-way) time dilation parameter to close agreement with the standard special relativistic value, 
gives a measurement of the difference between length contraction factors for directions parallel and 
perpendicular to motion with respect to the preferred frame, and supports the isotropy of the one-way 
speed of light. 

In their treatment, they use a greatly simplified geometry, and in fact assumed one maser to be 
at rest in the non-rotating frame (S say) comoving with the centre of rotation of the Earth, while 
the other maser is moving with respect to S (in frame S’, say), the latter’s motion being due to 
the Earth’s rotation. We make a less crude model by assuming the identity of Earth’s centre of 
rotation with the laboratory frame, S, moving at a constant velocity, v, with respect to the aether. 
The two masers, then, would be tracing a common circular path in S; however their velocities with 
respect to S can be approximated as being constant over the time periods between the emission and 
reception of two consecutive signals (wave crests). 

Consider an emitter, e, and an absorber, a, at rest in frames SL and SL, respectively, which are 
moving at the respective velocities u, and u, in the laboratory frame, S. Suppose an observer in 
S sees two consecutive signals being emitted by e at time tl and t3 from the respective positions 
x1 and x3. In S these signals will be received by a at two distinct times, say t2 and t4, with 
respective positions of reception, x2 and x4. Let the rest-frequency of the emitter (measured in SL) 
be v,’ = l/(t; - ti) and let the frequency of the signals received by the absorber, as measured in SL be 
vi = l/(ti - ti). These two frequencies are related to the corresponding time measurements in S by 

(76) 

Now consider the phase comparison made between the signals a receives from e and the signals 
that a, itself, emits. This comparison is made by a, for whom the phases of the incoming signals 



R Anderson et al. I Physics Reports 295 (1998) 93-180 151 

are 4 - 2rrv,‘tA where 4 is arbitrary. Since a’s own signal has a rest frequency of v,‘, its phase in 
SL is 0 - 27cv,‘tL. Thus the variation in phase difference between the incoming and outgoing signals, 
over a period of l/v,’ is 

Ll = 27c( 1 - v,‘/v,‘) . (77) 

Both v,’ and v: are invariant of synchrony choice in any frame, and thus the quantity LI (which is the 
measurable in the maser phase experiment) is unaffected by choice of K and E. Hence experimental 
measurements of d cannot distinguish either a preferred value of K or a preferred value of E. It then 
follows that the maser phase experiment cannot measure the K-dependent time dilation factor beyond 
a class of synchrony-dependent functions; nor can it give a measure of the one-way speed of light 
because this speed is also synchrony-dependent. As before, a fuller study [225] is compatible with 
a fully synchrony-generalised theory, including Eq. (75), the special relativistic form for arbitrary 
synchronization. This demonstrates in detail that this experiment has the same limitations as the two- 
photon absorption experiment, and cannot pick out the functional value corresponding to Einstein 
synchronization. 

There has been some confusion as to the reason for the synchrony-independence of the phase 
differences of the signals measured at one location. In his analysis of the maser phase experiment, 
Will [230] said of the phase difference measured at one location: 

“Notice that the result is independent of the synchronization procedure embodied in the vector 
E. This is because the initial relative phase of the two oscillators must be chosen arbitrarily; 
this is tantamount to choosing a convention for synchronization.” 

However the initial relative phase of the masers (oscillators) has nothing to do with the synchrony 
convention in an inertial frame with which they are not co-moving. The reason for the synchrony 
invariance of the measured phase difference is that only one clock, and not a system of spatially 
separated clocks is needed for such a measurement. Synchrony considerations do not influence this 
result. 

3.4. What do these experiments test? 

Certainly the experiments discussed in this section restrict the Mansouri-Sex1 parameters as stated. 
Since we have shown that the Mansouri-Sex1 formalism is unable to sustain the physical interpre- 
tations usually placed on the experiments, we may well ask that if these restrictions do not prove 
what various interpreters claim about one-way quantities, what do they prove? 

This question is also suggested by such extensions as Abolghasem et al. [ 1,2], and is vital to mo- 
tivate the various experimental tests proposed and performed. One critical question in a generalised 
theory is what kind of physical principles, when encapsulated in test theories, would allow slow 
clock transport to disagree with Einstein synchronization. Those principles would then be regarded 
as tested by the relevant experiments. 

It is not easy to get a satisfying answer. As always, any test theory is founded on axioms which 
remain unquestioned so that other, and arguably less compelling assumptions, may be considered 
vulnerable to experiment. As Mansouri and Sex1 discuss, physical assumptions about the behaviour 
of standard clocks and rulers under frame change are woven into any such formalism of spacetime 
measurements from different frames. Some of these assumptions in particular must be taken as 
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axioms if others are to be challenged by the outcome of experiment. We would like to identify 
those assumptions which can reasonably be regarded as properties of each member of the whole 
family of theories. 

It has been argued that an apparent “preferred frame” effect could conceivably reflect something 
entirely different, such as a metric change with respect to the local Lorentz frame, to which the 

lab frame is only an approximation. Mizushima [144,145] suggested that such experiments as those 
of the Colorado group (Section 3.3.1) approach the level of detecting the spatial anisotropy of 
metric changes in g 11 induced by an orbiting mass (lo-” for the sun orbiting the Milky Way and 
4 x lo-l6 for the Earth orbiting the Sun. Mizushima suggests that had the laser interferometer been 
mounted with floating mirrors, this would have been seen if the experiment were performed at several 
locations on Earth and several sidereal times, the preferred direction being that of the velocity of 
the orbiting body. However, if the observable such experiments measure is the comparison of slow 
clock transport and Einstein synchronization, and if a metric theory inevitably predicts agreement, 
this interpretation cannot be viable. One may rather detect the Lense-Thirring field of the Earth’s 
rotation, which is of the order of lo- . lo In effect, Mizushima proposes a gravity gradiometer. 
Tourrenc and Melliti [209] have also commented on Mizushima’s interesting but unsubstantiated 
claims, and the need for a new theoretical framework for the analysis of such experiments. Recently, 
Tourrenc et al. [210] have developed a test theory to unify Robertson’s test-theoretic approach and 
the PPN formalism, using Einstein synchronisation throughout. 

An early argument of Eddington, reproduced in Section 2.1.3, may be taken as a general proof 
that in a metric theory - one in which space-time has a metric which is locally Lorentzian, the 
world-lines of test bodies are geodesics of that metric and in local Lorentz frames, non-gravitational 
laws of physics are those of special relativity - slow clock transport and Einstein synchronization 
must coincide. A related result is that of Khajehpour and Mansouri [97]. The proof by Abolghasem 
et al. [l, 21, that this coincidence in an inertial frame leads to a related coincidence in a rotating 
frame, then reduces to another special case of this result. 

Incidentally Abolghasem et al. [l, 21 reinforce corrections such as those by Michel [ 1391, Lichten- 
berg and Newton [119], by Peres [164], by Gron [70] and by Ashby and Allan [g] of several related 
erroneous issues related to synchronization. These include the possibility of first order tests, also 
a supposed inequivalence of slow clock transport and Einstein synchronization in rotating frames. 
The latter concern was raised by Chiu et al. [29], Cohen et al. [34,35] and Rosenblum [186], who 
however had not properly accounted for the Sagnac effect. 

Hence no metric theory is an adequate candidate for a test theory for the experiments discussed 
in this section. A family of test theories which accommodates the possibility of an inequivalence 
of slow clock transport and Einstein synchronization has to be a non-metric theory. And indeed the 
(synchrony-generalised) Mansouri-Sex1 theory is such a theory, with no metric structure incorpo- 
rated, and with a preferred frame. It will not in general have a locally Lorentz metric. 

One approach to take is that such a family of theories would be likely to embody a range of 
physical assumptions which have the potential to challenge the standard form of slow clock transport 
rather than that of Einstein synchronization. A possible class of theories might then be the various 
revisions of the hypothesis of locality, according to which an accelerated clock at any instant ticks 
at the same rate as an instantaneously comoving but unaccelerated clock. 

It is fashionable (e.g., [139,67]) to assume the hypothesis of locality as an inseparable part 
of special relativity. This is motivated by an assumption or simplification to the effect that the 
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essence of special relativity is that the Lore& transformation must connect the coordinates of two 
accelerated (as well as two unaccelerated) frames which have a relative boost (at constant velocity). 
However, this somewhat obscures the logical distinctions that need to be made with respect to (for 
example) the status of experimental tests. Msller [ 1481 makes the special status of the hypothesis 
clear. Alternatives to the hypothesis of locality have been discussed; some early and gross proposals 
for the revisions of this principle, which would certainly challenge the equivalence of slow clock 
transport and Einstein synchrony, were discredited by Mainwaring et al. [ 1301. Mashhoon [137] has 
presented more sophisticated alternatives to the locality hypothesis, which however require large 
accelerations to induce substantial effects, and which would give vanishingly small corrections in 
the limit of slow clock transport. This kind of theory would then need some modification if it is 
to be a candidate test theory of the required form, vulnerable to the various experiments whose 
analyses have previously proceeded on the flawed Mansouri-Sex1 interpretation. 

This interpretative problem is further compounded by the possibility that the hypothesis of locality 
is implicitly built into the assumptions that all members of the Mansouri-Sex1 family make about the 
effect of frame change on standard clocks. One viewpoint is that all supposedly kinematic theories 
inevitably make such physical and dynamical assumptions. 

Einstein [49] has used another isotropy argument, itself universally ignored as far as we know, 
to show that any departure from the hypothesis of locality has to be an even function of the 
acceleration, so that no linear term is possible. This argument has some interest in our context; it 
has links with that in Section 1 for the simultaneity convention discussed in this script. In the context 
of a discussion of possible acceleration-dependent length contraction factors Einstein wrote: “... an 
effect of another kind is impossible for reasons of symmetry . . . Acceleration-caused dilations (if 
such exist at all) must be even functions of y (the acceleration) . . . A specific effect of acceleration 
on the rate of the clocks . . . would have to be of the order of y2.” 

We interpret this argument as follows. Because all directions are operationally symmetric, within 
the comoving inertial frame there is no physical reason to expect a difference in the instantaneous 
rate of the accelerated clock with the direction, as opposed to the magnitude, of the acceleration. 
Any rate change must therefore be an even function of the acceleration, in this and therefore in any 
other frame. 

Einstein’s statement can be expected formally to fail in an anisotropic synchronisation scheme. 
For the identical reason, the same directional symmetry assumption that would forbid a velocity-odd 
term is formally compromised by a choice of anisotropic synchronisation. Hence the time dilation 
factor of Eq. (15) acquires a linear as well as quadratic dependence on velocity. 

Another viewpoint is suggested by Ehlers et al. [46] who reject clocks as basic tools for setting 
up the space-time geometry and propose to use light rays and freely falling particles instead (see 
also [ 1661). They do this for the reasons that standard clocks alone without light only lead to the 
Riemannian separation with difficulty; that if the metric is defined by clocks the relation of geodesics 
to free fall is obscure, and finally that starting from light rays, more particularly from the round-trip 
speed of light, one can manufacture clocks. The fact that this programme is successful at all, even 
in standard relativity, suggests that standard clocks might be avoided in the development of test 
theories of the Mansouri-Sex1 type, and that a hypothesis of locality in the axioms of the theory is 

avoidable. 
Another approach is that of Golestanian et al. [69] who look for a geometric structure for space- 

times that are almost Lorentz invariant within the context of a subset of Mansouri-Sex1 test theories 
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and Finslerian geometry, giving a test theory in which constraining the parameters constrains the 
metric and so the geometry. Here there is very little room allowed for manoeuvre, and the axiomatic 
and unchallenged aspects of the model considerably outweigh the aspects amenable to experimental 
constraint. Hence the results of this interesting and brave programme presently seem too contrived 
to be even tentatively credible alternatives; special relativity deserves a better challenge and clearer 
triumph than the “also-rans” with nearly Riemannian structure. However, as with quantum theory, 
whose challengers in the form of quaternionic quantum theory and Weinberg’s seriously beleaguered 
nonlinear theory are also highly contrived, it may be precisely because special relativity is such a 
ubiquitous and successful theory that it is difficult to formulate a credible alternative. 

Another approach is that of Narlikar et al. [149], who consider the possibility that a photon has 
nonzero rest mass. They suggest that its isotropic speed in a preferred frame such as that of the 
cosmic microwave background may then translate into an anisotropic speed in another frame such 
as the Earth’s, and that this could be regarded as a natural anisotropic dispersion of the vacuum for 
light. 

This work is particularly interesting for the novel effort it makes to ground any observed effect into 
more fundamental physics. However, Narlikar et al. take no account of synchronization problems in 
either frame. Even if we may accept an Einstein synchronization convention in the preferred frame, 
the synchronization issue is still alive in the new frame, as Mansouri [ 1361 shows in the context of 
Mansouri-Sex1 theory. 

Narlikar et al. [149] actually consider a search for an anisotropy in the frequency of light trav- 
elling in opposite directions in the laboratory frame (and find encouragement from residuals in 
the laboratory laser-beating experiments and the apex of the dipole anisotropy in the then-existing 
measurements of the microwave background, although they misidentified the latter direction some- 
what; see Section 5.4). They compare in some detail with the strategy of Riis et al. [180]. We 
may therefore expect a similar resolution of the synchronization conventionality issue in this case 
as for Riis et al., so that the inequivalence of slow clock transport and Einstein synchronization 
could also arise from a non-vanishing photon mass. Incidentally tests of Mansouri-Sex1 theories 
have been proposed which can go well outside the Earth-bound laboratory, to use the data from 
lunar laser ranging [ 1461. Lunar laser ranging has now reached a level of accuracy [41] as to permit 
indirect demonstration of the gravitomagnetic consequences of general relativity, and to demonstrate 
the spatial isotropy of the gravitational interaction [ 1581. 

One guard against being blinkered by the presuppositions of any earlier test theory is the proposal 
of such an utterly different test theory. Another and a particularly sophisticated example of a test 
theory is that of Bowes and Jarvis [20], who consider the manner in which a k-deformed Poincare 
algebra is one mechanism of imposing a fundamental length scale. This might affect special relativity 
and the standard experiments on such length scales. 

We conclude that after many years of study, it is still not clear what those “tests of special 
relativity” which confirm slow clock transport to agree with Einstein synchronization (such as those 
discussed earlier in this section) yield in terms of more fundamental physical constraints, and what 
is their discriminating power in more fundamental physics. Several approaches for making contact 
with more fundamental physics seem possible, but are not yet well studied. At this stage we may 
well be content with constraining the parameters of a formal family of test theories, ensuring in 
the spirit of this review that a conservative interpretation is applied where necessary. Golestanian 
et al. [69] illustrate the point of view that to go further may naturally require introducing some 
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geometrical flavour into the model, without converting it into a full metric theory. Our own work 
in this direction is detailed in Section 5.2. 

4. Synchrony and noninertial observers 

4.1. Relativistic noninertial observers 

So far, we have concentrated on test theories in arbitrary synchrony for inertial frames in flat 
space-time. However, a more general test theory is required for many applications. This has stimu- 
lated for example the work of Abolghasem et al. [ 1,2] who consider experimentation on the rotating 
Earth and other accelerated frames of reference. As another example, our recent precision observa- 
tion [7,203] of electromagnetic effects such as the Sagnac effect in ring lasers which are derived 
from noninertial effects such as the Earth rotation raise the question as to what is learned about 
relativity from searches for a diurnal component of the Sagnac signal. These examples illustrate the 
value of extending our discussion of test theories and of the inclusion of arbitrary synchrony to an 
accelerated observer in a curved space-time. 

Our development proceeds from a geometrical perspective. Coordinates are still needed to describe 
events. Investigating the coordinates of an accelerated observer raises two separate problems. 

First, the observer’s coordinate system is derived from a tetrad (a set of four basis vectors that 
the observer is postulated to choose and to transport along his world-line in spac&ime). “Metric 
coefficients” are defined as the set of inner products of tetrad vectors. This does not imply that this 
is a metric theory, in the sense of one in which the interval is invariant under a boost. The metric 
coefficients define, amongst other things, the one-way speed of light at the observer’s location. The 
law of propagation of the tetrad along the observer’s world-line must take arbitrary synchrony into 
account, A modification of the Frenet frame method is used here for this; Kreyszig [ 1041 gives a 
discussion of the standard techniques. 

The second problem is the natural and unrestrictive assignment of the coordinates themselves. In 
the following sections, the Riemann normal coordinate approach used by Misner et al. [143] for the 
coordinates of an accelerated observer in general relativity is adapted to produce a prescription that 
allows one to take arbitrary synchrony into account. 

Misner et al. [143] require that their accelerated observer propagates a tetrad, and state the re- 
quirements for that tetrad, but do not give a formal analysis of how that tetrad is realised. Scorgie 
[ 1911 uses the standard Frenet frame formulae to obtain the tetrad for an accelerated observer within 
special relativity, and then follows Misner et al. [143] in their related analysis, obtaining the ob- 
server’s metric by appealing to the invariance of the interval in going from an arbitrary inertial 
frame in which the observer is analysed to the observer’s accelerated frame. 

Central to both the analyses given by Scorgie and by Misner et al. is the consideration of a 
(constant-time) three-dimensional slice of space-time as the observer’s physical space. This pre- 
cludes the use of their approaches in considering arbitrary synchrony; slices of constant time are 
necessarily synchrony-dependent. Similarly, one cannot use the curved space-time prescription given 
by Misner et al. who, for any point on the observer’s world-line, take as constant time curves those 
geodesics whose tangent vectors at that point have zero temporal component (purely “spatial” tangent 
vectors). 
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We first present a desired set of local coordinates which will handle space-varying synchrony 
(Section 4.2). Section 4.3 contains a generalization of the Frenet frame, and Section 4.4 then com- 
bines the previous results to obtain the coordinates of an accelerated observer. 

The following convention is used for basis vectors. Both for the case of local coordinates and the 
accelerated observer, basis vectors are denoted by {gr} with the basis vectors at the spatial origin 
denoted by {e,}. The standard orthonormal basis vectors are written as {yip}. The corresponding 
metrics are then written respectively as gpV, e,,, qpy. 

4.2. Local coordinates 

The choice of coordinate system has no physical significance and is a matter of convenience for 
the description of events. However, coordinates do reflect to some extent the assumptions made 
in this description, and so some freedom in prescriptions for coordinatizing a set of events in a 
general way can be helpful. In this section, the assignment of coordinates to the neighbourhood 
of an event is considered by generalising the Riemann normal coordinates method in order to 
facilitate synchrony considerations. Initially this generalization is discussed on an arbitrarily curved 
manifold. A manifold with zero curvature is used to obtain an actual set of coordinates in order to 
produce a coordinate system for an accelerated observer with arbitrary synchrony, for application in 
Sections 4.4 and 5.2.1. 

Riemann normal coordinates form a system of coordinates local to a point on a manifold (assigned 
in a neighbourhood of that point) and are defined in terms of a vector basis defined at that point. 
There is no requirement that the manifold be Riemannian or semi-Riemannian for the construction 
of such a coordinate set. Although this point has no bearing in the present context of the special and 
general theories - which both assume a Lorentzian metric - it allows the results of this chapter to be 
generalised for the purposes of producing a test theory of local Lorentz invariance in Section 5.2.1 
where a wide range of theories is considered. 

The discussion in this chapter will consider only manifolds with torsion-free connections. The 
existence of torsion does not prevent one from finding a system of normal coordinates centred on 
a point on a manifold; however, if the connection is torsion-free (and thus symmetric), then there 
exist normal coordinates such that the connection coefficients vanish at that point [99]. 

The motivation for Riemann normal coordinates comes from the exponential map (see [99, Section 
81). This is a mapping from the tangent space Tp of a point P on a manifold to a neighbourhood 
of that point, and is defined by 

expAV=y*, (78) 

where ~1 is a geodesic starting at P with tangent vector V at P. In particular, the exponential map for 
the geodesics through P maps the tangent vector to each geodesic at P to the point a unit parameter 
distance along that geodesic [205]. 

If a vector basis is defined at P, then normal components along such a geodesic can be defined 
to be proportional to the components of its tangent vector at P as follows. Consider a point P on 
a manifold with a torsion-free connection. There exists a neighbourhood, N, of P such that for 
all Q in N (where Q is distinct from P) there exists a unique geodesic, y say, connecting Q and 
P. This follows from the definition of Eq. (78) and the property that the exponential map maps 
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a neighbourhood of the zero vector in the tangent space at a point onto a neighbourhood of that 
point [99, Proposition 8.21. 

Let I be an affine parameter along 7~ with yo = P and ya = Q and let d/dlll=o = V = iV”qlx, where 
the basis vectors qa are the conventional, orthonormal choice, corresponding to Einstein synchro- 
nization at the observer’s spatial origin: (~aj~~) = qas and qllb = diag( - 1, 1, 1,l) (Section 1.5). 

The Riemann normal coordinates X’ centred at P are taken as proportional to the parameter 
distance A from P to Q and also proportional to the components of V; that is, X”(Q) = ;1N” (see, 
e.g., [143,116]). A different choice of synchrony at P corresponds to a set of coordinates different 
from the Riemann normal coordinates and the use of an alternative tetrad e, where 

(e0le0) = -1 , (eole,) = -K, , (44 = b, - fw, , (79) 

for three arbitrary numbers K, (playing the same role, as the notation suggests, to the earlier 3-vector 
of this name in Section 2.3). 

The basis vectors, ec(, can be related to a set of orthonormal basis vectors, qol, by 

e0 = ~0 , en = m + K,v0 

with the result Y = N’q, = V’e, where 

(80) 

Y0 =NO - K,W, V"=N" . (81) 

Coordinates {x”} = {ct$} can then be assigned to Q = y(n) according to the formula _xa(Q) = 1V”. 

These are related to the ‘Einstein synchronization’ Riemann normal coordinates, {X”} = {CT, X} by 
t = T - qX’/c and xi = Xi. (On a curved manifold, Einstein synchronization then holds only at 
P.) The choice of basis vectors in these cases defines the surfaces of simultaneity in the whole 
neighbourhood N of P and thus determines the synchrony choice for all points covered by the 
coordinate system. A more general (space-varying) choice of synchrony requires a description of 
the propagation of the spatial basis vectors (which are tangent to the surfaces of simultaneity at 
each point on the manifold). Now these propagation laws are defined by and require the knowledge 
of the connection coefficients at all points, and so cannot be handled by the method mentioned 
above. Initially, it specifies values for the affinities Taflv at only one point P with geodesic deviation 
corrections applied later [ 1431. 

In flat spacetime, one can first define simultaneity relations within this context by specifying how 
spatial basis vectors propagate along the geodesics, because all curvature effects of the manifold are 
already known. Now, by definition of the connection coefficients, 

(82) 

The temporal basis vector go plays no role in determining simultaneity relations, and should be 
unchanged by synchrony transformations, as suggested by Eq. (80). Thus the choice can be made 
that go is parallel-propagated along the geodesics emanating from P: Kg0 = 0, which by symmetry 
of the connection coefficients gives the result that synchrony choice will be independent of time. As 
is also indicated by Eq. (80), a change in synchrony change alters the spatial basis vectors only in 
the go direction: O,g,,, a go. These considerations leave unrestricted only the propagation of spatial 
basis vectors in the temporal direction, and together with Eq. (82) suggest the following general 
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form for the connection coefficients: 

rap0 = 0 , rimn = 0 , r”,n = F,, , (83) 

where the F,, are some differentiable functions of position. 
The basis vectors along the geodesics can be obtained from the definitions of the connection 

coefficients in the following manner. From Eqs. (82), (83), it follows that 

D 
$Io=O, &n = d$Lgo. (84) 

These differential equations then give 

s 

’ dx” 
90 = e0 , gn = en + -F,ngo d/I. 

o d/t 
(85) 

The symmetry of the connection coefficients and the requirement that the last equation be integrable 
suggest a constraint of the form F,, =<,,,, for some differentiable function F. 

From here, an appropriate neighbourhood of a point P can be coordinatized by using the above 
values for the connection coefficients and solving the geodesic equation, 

d’x’ 
-=- 

rp dx” dxp 

dL2 “fldA d3, ’ (86) 

to obtain a coordinate set. Hence (details are given in Vetharaniam et al. [224]) one may show that 
F can be replaced by f = F(0) - F, to give the final form of the connection coefficients in Eq. 
(83) as 

rap0 = 0 , rlmn = 0 , rOmn = qmn (87) 

where 

f(O) = 0, “&z(o) = -%n , f,mn(O) = 0 

for some differential function f = f (x"), and with the coordinates then simplifying to 

xO=II(VO - K,V”)+ f({Xfl(3L)})) Y=AP. 

038) 

(89) 

Similarly, from Eq. (85), the basis vectors along the geodesic become 

90=e0, gn = en - (K, + fl;l({xq(~>}>)eO , (90) 

and the metric tensor components (obtained by taking inner products of the basis vectors) are 

900=-l 7 gem =_M{W))) 9 gmn = 4nn - hdn > (91) 

giving the local one-way speed of light in the direction p as 
C 

c(p)= 1 +i?tIp”. (92) 

Although the coordinates of Eq. (89) have been derived in a flat space-time, they provide a valid 
coordinate choice for an accelerated observer in a space-time of arbitrary curvature. They are used 
in Section 4.4 as a set of “flat” space-time coordinates for an observer whose accelerations and 
synchrony are both arbitrary. 
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4.3. Tetrad propagation 

Let P be the observer’s world-line. The parameter, t, along P is the observer’s proper time. When 
constructing a tetrad to be propagated with the observer, it is natural to take the temporal basis 
vector to be the tangent to his world-line. This is because in the observer’s rest frame his space- 
time motion is purely in a temporal direction: e. = d/d (ct). Given the definition of eo, the other 
basis vectors are chosen subject to whatever conditions are required of the coordinate l?ame. 

One way of obtaining spatial basis vectors along this world-line is the Frenet frame method. In 
this method, a set of orthonormal basis vectors is developed sequentially by requiring that the kth 
derivative of the world-line lies in the span of the first k basis vectors [98]. (Kreyszig [104] discusses 
of the usual case where each derivative of the world-line is, by definition, proportional to a basis 
vector.) An orthonormal basis corresponds to a local imposition of Einstein synchronization; using 
a modification of the Frenet frame method, one can construct a tetrad which allows more synchrony 
freedom: instead of the usual orthonormality requirement for the basis vectors of a Frenet frame, 
the inner product relations of Eq. (79) are used. 

From the definition, Eq. (82), of the connection coefficients, propagation of the tetrad along the 
observer’s world-line is given by [ 1431 

(93) 

We define in Frenet fashion [98] 

i, = APve, , 

x1 =A’ 0, x24, ~3542~7 

where A,‘=0 if v > min(p+ 1,3). 

(94) 

(95) 

Covariant differentiation of the relations in Eq. (79) gives 

(illleY) + (+I&) = 0. (96) 

By substituting Eq. (94) into Eq. (96) and solving for A,” successively for the cases p = 0 to p = 3 
one obtains 

&O = xlel - xlme0 , 

4 = [X1(1 - 4) - x2K2le0 + wlel + x2e2, 

d2 = -(X1Q~2 - X2K1 +X3K3)e0 +hIc2 - &el +~3e3, 

i3 =-(xlfc2x3 - x3K2)eO + xlK3el - &e2. (97) 

(A Frenet frame results when K = 0.) Comparing Eq. (97) with Eq. (93) gives values for rGLlrO at 
the origin. These may be expressed as [143] 
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where U, A and LJ are, respectively, the four-velocity, four-acceleration, and angular velocity 
four-vectors of the observer, A denotes the wedge product, and the observer’s self-measured three- 
acceleration and spatial angular velocity are {c~~~,O,O} and c{x3,0, x2}, respectively. No restrictions 
are placed on the other components of the affine connection by this method. In the case of zero 
angular velocity the observer is in Fermi-WaIker transport [ 1431, and then with the choice of an 
orthonormal basis (K = 0) one obtains the standard description of a Fermi-Walker tetrad. 

4.4. Accelerated observer 

Here the development of a coordinate system for an observer with arbitrary acceleration and 
rotation is considered within the context of special relativity or general relativity. Metric tensor 

components are obtained to first order. The coordinate set given in Eq. (89) is used to label events. 
The main task here is to find a prescription for assigning these coordinates in a consistent manner. 
The observer’s world-line P parameterised by proper time, t, is modelled by a curve on a semi- 
Riemannian manifold with signature (1,3). It is natural to take P as the time axis for the observer, 
who is assumed to propagate a tetrad along P according to the modified Frenet frame prescription 
given in Section 4.3. This tetrad reflects the choice for the one-way speed of light at his spatial 
origin, which is represented as moving along P on the manifold. 

Misner et al. [143], who consider only an observer with an orthonormal frame, assign coordinates 
in the following manner. They consider all geodesics, at each point P(t) on the world-line, whose 
tangent vectors at P(t) have no temporal component according to the observer’s tetrad at that point 
(Fig. 10(a)). These geodesics are considered to be curves of constant time t and have spatial coor- 
dinates assigned along them which are proportional to the geodesic parameter and the tangent vector 
components at P(t), in a similar fashion to the Riemann normal coordinates case (see Section 4.2). 

This prescription has two properties which preclude its use for formulating coordinates with 
arbitrary synchrony. First, if an arbitrary tetrad is used, the geodesics picked out as curves of 
constant time (on the basis of having a tangent vector at P(t) with zero temporal component) will 
vary with choice of K. This means that along P an undesirable transformation in spatial coordinates 
would be associated with any temporal transformation which corresponded to a redefinition of the 
one-way speed of light. In principle, the spatial coordinates should be independent of a change in 
clock setting. This problem arises because this prescription is not geometric in nature. A second 
problem with that prescription is that the tetrad choice determines spatial surfaces (surfaces of 
simultaneity) and so how clocks are synchronised over these surfaces, including the full length of 
the geodesics embedded in it, removing any freedom in varying clock settings from point to point. 

Since it is convenient to assign coordinates along geodesics emanating from the observer, a geo- 
metric property is used to distinguish a set of geodesics along which spatial coordinates are assigned 
independent of synchrony choice. Once a set of geodesics is chosen, the coordinates assigned along 
members of this set are those of the corresponding “local coordinates” centred at P(t) (Eq. (89)) 
with the observer’s time t being added to the x0 coordinate. 

There are two sets of geodesics that might be expected to be useful for this purpose: those 
orthogonal to the observer’s world-line (which do not necessarily coincide with those having tangent 
vectors with no time component) (Fig. IO(b)) and null geodesics. 

Of the two sets of geodesics, the null geodesics might initially seem the preferable choice. Their 
use is natural in that it corresponds to the operational approach of obtaining distant information from 
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, 
0 

Fig. 10. (a) The Misner et al. construction of geodesics in a constant-time surface. If the time component eo of the 

tetrad at any point is orthogonal to the others, and is tangent to the worldline, this surface is also orthogonal to the 

worldline. (b) In an arbitrary choice of synchrony, the time component eo is not orthogonal to the others, nor tangent to 
the worldline. Of the two possible choices of surface for constructing geodesics, we take that orthogonal to the worldline 
(and so not necessarily having no time component). 

electromagnetic radiation, where the observer assigns coordinates to only those events which he sees. 
An advantage of the use of the null geodesics over the orthogonal geodesics would be that while 
orthogonal geodesics intersecting an accelerated observer’s world-line at different events eventually 
intersect, even in flat space-time, and thus limit the validity of the coordinate system to a region 
around the world-line [ 1431, null geodesics will not cause this limitation. However, the use of null 
geodesics in this approach results in an inconsistency: the connection coefficients are singular along 
the world line (see [224]). (However, for an inertial observer, coordinates may be assigned along 
null geodesics because then all the connection coefficients are zero along P. The time coordinate 
depends on the one-way speed of light along the geodesics and a locally flat metric is obtained.) 

This leaves the choice of geodesics orthogonal to the world-line as the only one to give tractable 
results. Again we use the results of Sections 4.3 and 4.2. 

Orthonormality of a geodesic with the world-line at P(t) requires that for the geodesic tangent 
vector V, V . eo = 0. So 

VO= -rcIC,V ) (99) 

(where now K,, is -l,, (0) i.e. at the point P) and the coordinates along the geodesics are, from 
Eq. (89), 

xn = LV”, x0 = ct + j-(x”) . (100) 

Using the chain rule, Eqs. (loo), (86) allow the connection coefficients rp,,,,, to be expressed 
in terms of the other connection coefficients rPyO which themselves have already been determined 
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along P by the application of Eqs. (93), (97) to this situation: 

rm,, = -(~mJlll~~ + R&J + ~mclo&J.L) > 

ropn = -(~opoh + ronox:, + ~“ooLdn + _Ld * 

From Eqs. (93), (97), the connection coefficients along the world-line are then 

-X1”1 Xl 0 0 

(PJ = 
x1(1 - 4) - x27c2 x1x1 x2 0 

. -X1”1K2 + X2Kl -x3x3 XlK2 - x2 0 x3 

-xlxlK3 + x3K2 Xl K3 -x3 0 

(101) 

(102) 

Although the coefficients rPyO are known along P by reason of tetrad propagation, they are not 
known along the orthogonal geodesics at this stage; their values might be obtained by integrating 
the expression for the Riemann tensor in terms of the connection coefficients and their derivatives 
[ 1321. From the definition of the connection coefficients, one could then obtain the basis vectors 
exactly along all the geodesics. Unfortunately the solution for the connection coefficients from the 
Riemann tensor expression is generally intractable (though not in the case of an inertial observer 

[1321). 
The method used by Misner et al. [143] at this stage consists of solving the differential equations 

which result from expressing the connection coefficients in their Christoffel symbols form and does 
not readily lend itself to space-varying synchrony because the connection coefficients are evaluated 
at only one spatial point. Therefore an approximation must be used to obtain values for the basis 
vectors away from the world-line. Instead of making an approximation to the rflVo and thus the 
other connection coefficients, one can make an appropriate approximation to the covariant derivative 
which would require only the values of the connection coefficients along the world-line. Metric 
tensor components can then be found by taking inner products of the resultant basis vectors. 

The basis vectors, {gl(}, along the orthogonal geodesics are obtained by parallel transport of the 
set {ep} along these geodesics (see [224]). They can be written in the following form which is 
valid only near the world-line: 

90 = (1 + X’xl )e0 - Rn(en - KneO)/c , gn = &ns0 + en - 580 , (103) 

where the following definitions have been used. 

R’ = cx2x2 , R2 = c(x3x3 - x1x2) , R3 = -cx2x3 , R” _ EnikXj szk , (104) 

and where D is the observer’s angular four-velocity, as mentioned in Section 4.3. (In this last 
equation, the observer’s self-measured spatial angular velocity has components { Qk} = c{ x3,0, x2}.) 

The metric tensor components are obtained by taking inner products of the basis vectors Eq. 
( 103) and using the relations in Eq. (79): 

go0 = -( 1 + x’x~)~ + R2/c2 , (105) 

gem = -J,,,soo - WC, (106) 

Smn=~mXnQoo +~mR"I~+~n~"l~+~mn* (107) 
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These metric components ignore curvature effects on the manifold because they do not take geodesic 
deviation into account. For a manifold with non-zero curvature, curvature effects come into play at 
second order [ 1431, and so Eqs. (105)-( 107) are, in general, valid only to first order. However, in 
a flat space-time theory such as special relativity they are in fact exact, agreeing with the metric 
derived by Nelson [ 1501, Hehl et al. [83] and Scorgie [ 1911, all of whom assume an orthonormal 
basis (when f = 0). These results will be used in Section 5.2.2. 

5. Tests of local Lorentz invariance 

5.1. Review of alternative strategies of tests of local Lorentz invariance 

Several different strategies have been proposed for testing for possible deviations from general 
and from special relativity. Much hinges on the choice or otherwise of a metric theory. 

All metric theories of gravity are based on the Einstein equivalence principle, which assumes 
both the weak equivalence principle and local Lorentz invariance [ 171. A metric theory possesses 
a symmetric, locally Lorentzian metric, with test particles following geodesics of that metric and 
with non-gravitational laws of physics being those of special relativity in local Lorentz frames. 
On a manifold this corresponds to the existence of a torsion-free affine connection, compatible with 
a Lorentzian metric of signature (1,3). The existence of local Lorentz invariance in a theory depends 
only on the nature of the al&e connection and of the metric structure. 

Other structure is needed to impart the full character of the corresponding space-time. Tests which 
honour special relativity (or local Lorentz invariance) within an alternative to general relativity (or 
Einstein’s theory of gravity), are often performed in the context of the well-established parametrised 
post-Newtonian (PPN) framework of metric test theories [ 143,231]. In this, just such other struc- 
tural features, e.g. a revised role of the stress-energy tensor, different constants for the bending of 
space-time by matter and their possible dependence on a preferred frame, are used. In testing local 
Lorentz invariance, we are discussing a more radical departure in which preferred-frame effects may 
show up even within non-gravitational experiments and which therefore require a non-metric theory. 

The most prominent tests of local Lore& invariance are those in the tradition of, e.g., 
Gabriel and Haugan [64] Chupp et al. [31], Audretsch et al. [lo], Haugan and Katimann [79]. 
Until recently (e.g. [ 167,115] such experiments were cited as testing the isotropy of space, by 
which was meant testing for a preferred-frame directionality on atomic properties. This has now 
been more helpfully re-presented as testing local Lore& invariance. 

The strategy employed has currently reduced to a small choice of procedures. Either the La- 
grangian is adapted, or a preferred-frame metric (or generic distance measurement) is proposed, on 
the basis of some non-metric test theory whose parameters enter the problem through this choice 
of dynamics or reference space. A fundamental equation of atomic physics such as the Dirac equa- 
tion, written in a covariant formulation, is then solved using this Lagrangian and/or metric. The 
parameters of the test theory appear in its observables and therefore can be bounded by experiment. 

By now, there are several choices of test theories to some extent chosen or adapted with an eye 
to the nature of the experimental test in hand. The THEN theory postulates that the limiting speed 
of matter is not that of light, and adapts the material Lagrangian accordingly [64]. Haugan and 
Kaufhnm [79] give a mature discussion as to how Moffat’s nonsymmetric gravitation theory is 
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a member of Ni’s non-metric x-g family of theories in which gravitational effects make space 
optically birefringent. 

Tests of the principle of equivalence essentially require a non-metric theory as a test theory. For 
example, Nordtvedt [157] discusses the link between violations of gravitational red-shift and viola- 
tions of the universality of free fall within non-metric theories. Opat and Unruh [ 1611 suggest the 
comparison of atomic clocks at sea level at different latitude; this compares the effect of gravity on 
clock atoms and seawater to 1 part in 10 18. They suggest that a search for solar and lunar modulation 
of the frequencies may also be worthwhile. Such an experiment seems basically electromagnetic; 
pulses from each clock are sent to the other, and the relative lag is monitored. 

Berglund et al. [17] discuss literature in which a preferred metric may affect the form of the 
weak interaction. In their case the possible coupling between magnetic field and particle momentum 
(expressed in a preferred-frame basis) is considered as it affects the precessional frequency of atoms 
in a magnetometer. 

5.2. A,ffine test theory with preferred vector field 

5.2.1. Introduction 
The background for our own approach has been detailed in Section 3.4, and the context in 

Section 4.1. So far, we have concentrated on test theories in arbitrary synchrony for inertial frames 
in flat space-time. The Mansouri-Sex1 test theory was formulated for inertial frames only. General- 
izations by Abolghasem et al. [l, 21 for the analysis of non-inertial observers applied a coordinate 
transformation for constant rotational (Earth) motion. Golestanian et al. [69] considered minimal de- 
viations from the geometry of standard relativity. In addition, recent precision observation [7,203] 
of electromagnetic effects such as the Sagnac effect in ring lasers which are derived from (the non- 
inertial) Earth rotation again [200] raise the question as to what is learned about relativity from 
searches for a diurnal component of the Sagnac signal. These examples illustrate the value of ex- 
tending our discussion of test theories and of the inclusion of arbitrary synchrony to an accelerated 
observer in a curved space-time. 

The approach presented here (following [224]) has a geometrical foundation from which a family 
of coordinate transformations is derived, as opposed to simply being postulated. General non-inertial 
motions of an observer can be accommodated, giving a theory which contains the (synchrony- 
generalised) Mansouri-Sex1 transformations [133] as a subclass. The geometric perspective proves 
to be complementary to the traditional approach in the Mansouri-Sex1 formalism. Beil [14] quotes 
this as one illustration of non-metric-preserving transport, and shows how it is merely one class of 
a very much larger set of possible theories, much as the coordinate transformation investigated in 
this review is just one of a very much larger class of possibilities [81]. 

The use of general synchrony allows us in particular to revise one point of interpretation of 
Mansouri and Sex1 by deriving the effect of synchrony on the parameter E of the Mansouri-Sex1 
theory. Once the synchrony-independence of the physical predictions has been established, it is 
convenient to assume Einstein synchrony locally. 

Several generalizations are possible. The coordinate transformations here can be used more gener- 
ally, so as to transfer whatever physics is assumed in the preferred frame (say in neutron interfero- 
metry) to another frame. The assumption of flat space-time is unnecessary, since the affie structure 
is quite adequate to include curvature. 
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When special relativity is formulated on a four-dimensional manifold, its characteristic kinematics 
derives from the existence of two geometric structures on the manifold: an aI%ne connection or 
law of vector transport corresponding in this case to a flat space-time, and a Lorentzian metric of 
signature (1,3) which is compatible with the connection and with invariance of the interval. In a 
standard construction, and with the use of orthonormal basis vectors for space-time coordinatization 
(tetrads) for all observers, inertial coordinates can then be found in which the connection coeffi- 
cients are zero and the metric tensor components have the familiar orthogonal Minkowskian form 
{qlly} =diag{-1, l,l, 1). Th e invariance group of transformations which preserves this form of the 
metric components contains the Lorentz transformations, which then form the group of transfoima- 
tions from one set of inertial coordinates to another [62]. If the restriction to orthonormal bases is 
relaxed, for example by introducing a synchrony change, the metric components, the inner products 
of the basis vectors, no longer keep their diagonal form and the connection coefficients are not in 
general zero. 

If an affine connection is torsion-free, there always exist coordinates centred on any event such 
that at that event the connection coefficients (but not necessarily their derivatives) are all zero [99] 
and then a (1,3) metric compatible with that connection is Lorentzian at that event. These properties 
hold, for example, for all PPN (parametrised post-Newtonian) test theories for general relativity. 

To test local Lorentz invariance, one must go outside the restrictions of such theories, removing 
structure which corresponds to local Lorentz invariance, and operate in a framework of more general 
theories. Since kinematical analysis requires the comparison of vectors propagated along curves, an 
afhne structure is needed, and so it is natural rather to choose to remove the metric as a geometric 
structure in order to produce a test theory. 

The omission of a metric as a geometric structure on the manifold is not in conflict with relativistic 
kinematics, nor is it a denial of the existence of a space-time metric, Rather, it allows the test theory 
to examine both those theories which have a metric and those which do not, with the aim that 
experimental tests be used to restrict these theories and to determine the validity of local Lorentz 
invariance at a given level of precision or confidence. 

On a general Riemannian manifold, the metric and the affine structures select distinct classes of 
geodesic. A metric structure singles out the curves of extremal distance, while the affine connection 
selects those curves which parallel transport their tangent vectors. These two classes coincide only 
if the connection is torsion-free and metric-compatible [84]. A theory with only an affine structure 
possesses geodesics which naturally correspond to unaccelerated motion and whose existence does 
not demand a metric structure. However, a formalism with only affine structure does not suffice for 
a test theory; it is too general to have the necessary predictive power and falsifiability. 

In accord with, and to be as close as possible to, the original motivation of the Mansouri-Sex1 
test theory of Section 3.1, we propose a family of test theories in which the general affine struc- 
ture is restricted by postulating an “aether”; that is, extra structure corresponding to a preferred 
frame is added. A natural candidate for the preferred frame is the cosmic background radiation, 
as discussed in Section 3.1 .l. The philosophy of this approach is not so much a test for such a 
preferred frame as a test of local Lorentz invariance. After all, special relativistic kinematics is 
compatible with a preferred frame if the intrinsic preference does not affect the metric and frame 
transformation. 

From a geometric perspective, the most natural way to impose this structure is to postulate the 
existence of a preferred vector field, X, whose integral curves are geodesic on the entire manifold. 
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X may be interpreted as the four-velocity of the preferred frame at each event, and the integral 
curves of X model the world-lines of the spatial points of the preferred frame. 

The structure for the test theory is thus a torsion-free affine connection and the preferred vector 
field, X. To set up a coordinate system, an observer forms a set of basis vectors at each point of that 
system by simply taking partial derivatives with respect to the coordinates. Then that observer may 
define an inner product rule for these basis vectors, and thus define a metric. This has no physical 
meaning and does not suggest a metric for the manifold, but is rather a matter of description, which 
may or may not be invariant under a coordinate transformation, For mathematical convenience, it is 
assumed that each observer who propagates a tetrad defines a special relativistic type inner product 
relation similar to Eq. (79) between the basis vectors in that tetrad, and thus the formalism of 
Sections 4.2-4.4 can be used here. Note, however, that while such an inner product definition does 
define a sense of orthogonality, it makes no sense to talk about a metric in an observer’s space. 

While no space-time metric is discussed, this is independent of the existence of a metric in 
physical three-space; it is assumed that the physical three-space of each inertial observer in the theory 
is Euclidean. It is assumed that light travels along geodesics of the connection and furthermore, that 
in the preferred frame, C, the return-trip speed of light is isotropic (having value c) to first order. 

5.2.2. Development with arbitrary synchrony 
Consider an observer S who is in a laboratory frame in arbitrary motion, and let S’s world-line 

be P, parameterised by his proper time t. Suppose that S defines a set of basis vectors, e,, say, along 
P and let S define the inner product relation Eq. (79) along P. Such a definition in this context 
is purely mathematical and not necessarily related to any intrinsic property on the manifold. S can 
then assign the coordinates {x”} = {ct,x, y,z} given in Eqs. (loo), and his basis vectors gr near P 
are then given by Eqs. (103). Thus S formally has the same set of basis vectors and coordinates as 
the noninertial observer discussed in Section 4.4. 

Writing 

L= 1 +x1x1 +R”rc,/c, (108) 

one can express S basis vectors in Eq. (103) as 

go = L - R”e,lc , gn = -(G + _fJ)eo + (6,” + .fX’/ch . (109) 

Now, consider the preferred frame, which is represented by a vector field X. Any geodesic which 
is an integral curve of X can be used to represent the world-line of spatial point fixed with respect 
to the preferred frame. Let Z be an observer at rest in the preferred (inertial) frame. Choose a 
geodesic integral curve, n say, of X which intersects P at P(0) and set the parameter, z, of n to 
be zero at P(0). This corresponds to choosing the spatial origins of both frames to coincide when 
t=r=o. 

Z can define a coordinate system {P} = {cr, c,q, 0, in a manner similar to S, although because 
C is inertial the system will be simpler. Denote the basis vectors of C near n by G,, with those 
along II labelled G”,, and let C define the following inner products and coordinates along a geodesic 
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with tangent vector d/dA = Vu& perpendicular to l7: 

($I&) = -1 7 (&I&> = - 4 3 (&IGJ = 4nn - J&no 3 

Go = Bb , G,=h,,&,+&-&%I, 

5” = AV” , to = ct + h( {x”}) , 

where h and ~j’ = -h,;(O) are the counterparts in 
None of these steps requires a global metric; 

arbitrarily defined. 

(110) 

(111) 

C of f and lci in S. 
in particular, orthogonality along world-lines is 

Let Ep be Z’s basis vectors along P, the world-line of S. At an event Q, lying a distance 1 along 
a geodesic through P(t), Z’s basis vectors GP are given in terms of E, by 

Go=Eo, 

G, = E, - P,,(Q) - MW))l Eo 
s E,, - Ah,Eo . (112) 

The basis vectors Ep and e, at P(t) are related by some transformation: 

This 

and 

Ep = q ‘eV . 

leads to (details are given in [224]) 

Ldt - (IC, + JmL)d.xm = (cdr - dr”Ah,)( l/Y0 - v”q “) + d5”T, ’ 

-R” dt + dxn(6,,m + JnRm/c) = bmP(dSP - (cdz - d5”Ah,)vP/c), 

b”, - Tp m 

(113) 

(114) 

(115) 

(116) 

where {b”,} is assumed to be an invertible matrix. 
When S is inertial (x1=x2=x3=0), and when h=-rc”. 5 and f=-rcex, one has R”=O, 

Ah, = 0, and xn = -K,. Identifying a = l/Y’, E, = Tj(b-‘)J’,, Eqs. (114), (115) give the synchrony- 
generalised Mansouri-Sex1 test-theoretic result of Eqs. (54), (55). a is the time dilation parameter, 
E depends on the synchrony choice in both frames, and b”, are length contraction parameters. 

It is interesting to note the significance of E. From Eq. (113), if Tj = 0 then, at any point along 
P, the S spatial basis vectors span the same surface as do C’s spatial basis vectors. In the context 
of the Mansouri-Sex1 test theory [ 1331 (flat space-time) and because w and rc” are constant, Z 
and S share the same foliation of spacetime along P. Thus they agree on whether two events are 
simultaneous or not. This perspective explicitly shows the conventional nature of simultaneity, and 
is in accord with Mansouri-Sex1 test theory where E was introduced as a measure of the difference 
in time intervals between Z and S. For zero E there is agreement on simultaneity, but not necessarily 
on time intervals. 

An expression for e may be obtained in terms of the other parameters (details are given in [224]): 

6,~ --Km -a(b-l)“,-(l + x0 . u/c)ic,” + v”/c 

(1 +rco* u/c)2 - u’/c2 ’ 
(117) 
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in agreement with the expressions for E obtained using the operational approach of Section 3.2. 
When Einstein synchronization is imposed (K = 0), the above equation coincides with Eq. (71). 
This demonstrates that E, while depending on a and b, is not a discriminator of theories, but reflects 
relative synchrony conventions. Hence, synchrony choice does not affect experimental predictions 
for measurables either within the Mansouri-Sex1 test theory (see Section 3.2; the parameters a and 
b are measurable only within synchrony equivalence classes) or within our generalised theory. 

Hence, for the purpose of making predictions, it is convenient to put rc = 0 and f = 0 to simplify 
analysis. This gives E the simple form in Eq. (71). Such a choice is not in conflict with the 
conventionality of distant simultaneity as 
distinction of this synchrony choice. 

long as there is then no attempt to claim experimental 

5.2.3. Test theory in Einstein synchrony 
As just explained, we now set rc = 0. The velocity of a point at x in S with respect to the 

instantaneously comoving, non-rotating frame, S,, is fl x x = - V. So the spatial coordinates assigned 
to an event will be x=x, + Jd V dt, dx - V dt = dx,. 

In this manner we find the following form for the frame transformation from Eqs. (114), (115): 

dt” - dr . v/c’ 

h”=a(l +x1x,)(1 - u2/c’) ’ (118) 

dx- Vdt=b(dc-vdr). (119) 

Hence although S is rotating with respect to C, b is not affected by the changing orientation of the 
two axis sets. This is because dx - Y dt has constant orientation with respect to a nonrotating frame 
and thus C. Hence, requiring that the space axes of S and C are parallel when t = 0 ensures that 
the “length contraction” matrix b in Eq. (115) has no rotational components. 

We now choose to simplify the form of the length contraction matrix b, by regarding it as a 
tensor under 3-space rotation, so making it feasible to choose the coordinate axes as its principal 
axes. We therefore separate the action of b into two parts by assuming that b acts on the direction 
v independently of its action in the plane perpendicular to v. Furthermore, we assume that both 
directions perpendicular to v are acted on in the same way and that the action of b is purely to 
scale by factors /? and 6 in directions parallel and perpendicular to v: 

6w 
bw= 

if wlv, 

Bw if wllv. 
(120) 

From this equation and the identity (v x p) x v = u2p - (v . p)v, we obtain the action of b on an 
arbitrary (spatial) vector: 

(121) 

Since the effect of b can be broken down into the sum of independent scaling effects, it follows 
that the inverse action of b is given by 

b-lp=i!$v+;~ xv. 

B 
(122) 
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Restating Eq. (118), and using Eq. (121) in Eq. (119), gives 

169 

dz - d{ - v/c2 

dt=a(l +xX)(1 - u2/c2) ’ 

dx- Vdt= j? d$-di)v+d(=$) xv, 

where /I, 6 and a are functions of v, and x1 has been 
the final form of the transformations of the test theory 
orthonormal tetrads. 

(123) 

(124) 

written as x. These last two equations are 
for the case where all observers propagate 

When the special relativistic values of the three parameters (a = l/y”, p = yV and 6 = 1) are sub- 
stituted into Eqs. (123) and (124) the resulting transformation is in agreement with that of Nelson 
[ 1501 for the coordinate transformation from an arbitrarily accelerating frame to an inertial frame 
within special relativity. This can be seen by taking infinitesimals of Eq. (19) of [ 1501. 

An expression for the one-way speed of light for S, corresponding to the choice f = 0, is ob- 
tainable by using the value chosen in Z’s frame and transforming to the S-frame. Eqs. (119) and 
(122) give 

d{--vdr= 
v - (dx - Vdt) vx(dx-Vdt) xv 

/%I v + 629 ’ 
(125) 

d<.v-v’dr=v.(dX- Vdt)/jl. 

From here, using Eq. (123), 

(126) 

dz= ’ +XX& _ v.(dx - Vdt) 
a jl(c’ - 02) . 

Using this and Eq. (125), 

v.(dx- Vdt) 1 +xX 
fiv2(1 _ u2/C2) + a dt 

These two results for dr and dc then give 

df+2&2= (d-;d’)’ _c2(1+Td2dt2 + [(dx- ;Wvl’ 
a2yZ: 

(127) 

(128) 

(129) 

Since the one-way speed of light in Z has been chosen as c, in S its value in a direction 3 is given 
by putting the left hand side equal to zero in Eq. (129) and solving for dx/dt = IQ: 

(130) 

(131) 

Note that when /3 and 6 take on their special relativistic values all velocity dependence in the 
above equation vanishes. 



170 R Anderson et al. IPhysics Reports 295 (1998) 93-180 

While the present formalism seems to be kinematic, dynamical considerations (such as electro- 
magnetic or gravitational effects) are latent, and imply the postulation of dynamical behaviour. The 
most natural way to insert this is to require a particular dynamical behaviour in the preferred frame 
and to transform this to the test frame via Eqs. (123), (124). 

5.3. Sagnac ejfect 

A novel feature of experimental laser research is the steady improvement over decades in the ac- 
curacy with which noninertial effects are measured. The Sagnac effect has now been seen in a wide 
variety of interferometers [7] including, in particular, SQUIDS or superconducting Cooper pair inter- 
ferometers [239] optical interferometers, neutron interferometers [36] and most recently electron and 
atomic interferometers [77]. Large ring laser experiments are presently earth-bound and so inevitably 
are rotating with respect to the local Lorentz frame. The detection of the Sagnac effect arising from 
the rate GE of rotation of the earth was initially performed optically [141], and the detection by small 
ring lasers predated the vivid and better-documented demonstration by neutron interferometry [201]. 
By now, several ring laser systems are reported to have detected the associated Sagnac effect (for 
example, see [202,124,125]). In the Canterbury ring laser, the frequency resolution can reach 10e6 
of that from the earth-rotation-induced Sagnac effect [202], and it seems to be feasible to detect the 
secular variations in the rate of the rotation of the earth (at the level of lO-8sZ,) in a somewhat 
larger device. Optical interferometry still leads the field for relative accuracy in such a measurement. 
In addition, several studies of ring lasers under significant acceleration have been reported [ 112,30,59] 
and some elegant experiments by Kowalski et al. [ 101,102] explore at novel precision the effect of 
acceleration or of gravity, applied to some or all of the optical components of the ring laser system, 
on the beat frequency of ring lasers containing dielectrics. 

The nature of ring interferometric effects within a preferred frame theory and the potential of ring 
lasers in bounding deviation from local Lorentz invariance can be seen from the analysis given in 
Section 5.4 for a vacuum ring. 

5.4. Ring laser tests 

In the context of the test theory of Section 5.2.1, with the imposition h = 0 for Z (corresponding to 
the choice of an isotropic one-way speed of light for C), the parameters a, p, and 6 are expandable 
in terms of z? (see [ 1331). Thus it is seen from Eq. (13 1) that the expression for the one-way speed 
of light in S has only even powers of u in a velocity expansion. Hence any closed-loop optical 
test covered by the test theory in Section 5.2.1, and hence covered by the theory of Mansouri 
and Sexl, can at best be of second order in the preferred frame velocity. While some choices of 
synchrony in S would introduce first-order velocity dependence in the one-way speed of light in S, 
this dependence would cancel out over a closed path (because of the covariance of the formalism). 
Similarly, a choice other than Einstein synchronization in C (while resulting in odd powers of u in 
the expressions for the test theory parameters) will have the same effect in S. 

Within this test theory, an analysis of the Sagnac effect in a ring laser predicts sidereal, u-dependent 
variations in the measured beat frequency. Following Scorgie [190], consider an arbitrary, smooth 
closed path ‘% along which laser beams travel in both senses. Denote T+ and T_ as the times taken 
for light to traverse % in anti-clockwise and clockwise senses respectively and let c+ and c_ be the 
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(position-dependent) speed of light in those respective senses. Taking dl to be an element of arc 
along V in an anti-clockwise sense (so that c+p = dZ/dt), one has, from Eq. (13 1 ), the following 
expression for the difference in transit time for the two directions: 

T+-T_=f ($-;)dl 

=2 
.f 

(V+(Y~u)Qo/u*)~dl 

4 R* + Q( V. a)*/~* - (c& 1 + x~)/ar)* ’ 

(132) 

(133) 

where Q = d2y2/f12 - 1. 
For an Earth-bound ring laser having a rotation of the order of the Earth’s, the linear acceleration 

is due to gravity, is small, and contributes negligibly in Eq. (132). Similarly the Earth’s small 
angular rotation magnitude fi allows Y = x x fl to be ignored at second order. 

Using Eq. (104), Stokes’ theorem and the vector identities 

Vx(xx51)=-29, v x [x x (SL 1 u) u] = (n * u)u-v*52 ) (134) 

and assuming that the change in u is negligible over the time it takes a light signal to traverse %? 
(so that some of the u-dependent parameters may be treated as constants under integration), Eq. (132) 
becomes: 

T+-T-=-g f (V+Q$%).dl 
c Q 

= $$ [(Z + Q)Q.A - Q 
(a*u)(u.A) 

u2 1 . (135) 

When a, B and 6 take on the special relativistic values (l/y, y and 1, respectively), with Q = 0 as 
a result, Eq. (135) becomes 

4Q.A 
T+ - T_ = - 

c2 (136) 

which is the standard result for special relativity. Such a transit time difference in an interferometer 
translates into a frequency difference dfb between counter-propagating waves in an active ring laser 
[201] A& = c*(T+ - T-)/&P,, where & is th e 1 aser wavelength (the HeNe value 633 nm in the case 
considered below) and PO the perimeter of the ring (3.477 m). This then gives in special relativity 
Afb = 48. A/&P,,. 

Because we are now working within the Einstein synchrony choice, a, B and 6 are even functions 
of D [ 133, I]. From here we work to second order in V/C, when a = 1 + Q~$/c~, j3 = 1 + fi2u2,P, 
S = 1 + 8202/c2 (in special relativity a2 = - i, p2 = i, J2 = 0). Hence 

a*y* 
- = 1 + (1 + 2(a2 - 6,))$, 

s* 
Q=(l + 2632 - a,,; > (137) 
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xR 

Fig. 11. If the preferred frame velocity II is taken as that relative to the cosmic microwave 
described here permits the projection of u x (Sa x U) on the ring area to be observable as 
frequency. 

background, the test-theory 
a diurnal variation in beat 

and so (using Eq. (134)), with X = (u x 0) x u: 

(138) T+ 
u2 f2.A 

- T- = 4 1 + (1 + 2(a2 - 6,)) cz 1 c2 + 2 [ 1 + 2(62 - flz)] y 

= 4 1 r2 + [S + 2a2 - & - pz] 2 1 (139) 

We take u = uo + 6u where u. is the velocity of the (centre of the) Earth with respect to the 
preferred frame defined by the cosmic microwave background (CMB) [57] and 6u = fl x R and is 
that due to Earth rotation (like R, relative to the centre of the Earth) of the ring laser laboratory at 
R, Cashmere, Christchurch, New Zealand (latitude A = 43”34’37”S) (Fig. 11). 

In previous publications we have used the data quoted by Narlikar et al. [149], that the Earth’s 
velocity with respect to the preferred frame is u. = 2.4 x 10m3c at a declination 6 of -26”. In view 
of the following more refined estimate both figures seem to be substantially incorrect. We now 
believe that Narlikar et al. used figures for the local group of galaxies, or the Milky Way, rather 
than those appropriate for Earth-bound experiments such as the ones they and we discuss. This, 
and especially the speed correction, will have some effect on their effort to reinterpret some laser 
experiments. Because X is only a few degrees removed from sl, which has a constant projection 
on the ring area, it is important to make the relative estimates carefully. 

We take here recent values of the galactic latitude I” and longitude b*‘, etc., also the magnitude of 
the dipole term and the resulting velocity (367 km/s, or 1.22 x 10e3c) for the apex of the CMB dipole 
from Kogut et al. [loo] and Bennett et al. [16] as in Table 1. Converting [240] the average values 
to equatorial coordinates gives a declination and right ascension of 6 = - 6.82 f 0.12, ct = 167.52 f 
0.09 = 1 lh.17. This is on the boundary of the constellations Leo and Crater (the microwave photons 
seem hotter when from this direction), and approximately 10” S of the Ecliptic (Fig. 11). The 
declination 6 of the CMB as seen from Earth is the angle between u. and the Equatorial plane. 
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The term present in Eq. (138) when o = 0 is the Sagnac effect predicted by (special and general) 
relativity [ZOl]. On time averaging over one sidered day the second term (that proportional to 
a2 - 6,) and also the third term introduce a bias on the nominal Sagnac value, changing the apparent 
magnitude and direction of the Earth rotation rate fit. These biases will be undetectable in practice, 
being considerably smaller than the calibration errors of the area measurement for example. In 
addition, these terms exhibit sinusoidal variations with a period of a sidereal day because the rotation 
of the Earth changes the direction of BED, inducing a related variation in the magnitude u2 of the form 
2611. uo. In addition, in sensing the projection of the vector X on the ring area A, the third term is 
subject to the sinusoidal change in the angle of this projection and so will give another signal with 
a period of the sidereal day. It is required here for both mechanisms (o variation and X projection) 
that t, is not parallel to It, and for the second (X projection) that X is not parallel to fit. Because 
X . A = t?L! . A - (U . A) (2, . a), the first term in this expression for X + A can be incorporated with 
the earlier terms proportional to u2, as in the fkst term in Eq. ( 139), giving a correction 

. 

The numerator of the second term in Eq. (139) contains a leading term Yo =(52 - uo)(uo.A > which 
has a diurnal variation in principle; the direction of A varies as the Earth rotates. This gives a 
contribution (carets denoting unit vectors): 

This term will be greater in magnitude, because it does not depend on the rotation-induced speed 
60 5 465 m/s of the Earth’s surface at the ring laser laboratory. Physically then, this term reflects 
an anisotropy 82 - /32 of length contraction (parallel and perpendicular to the relative velocity) 
additional to that (So - &,s,) defined by the Lorentz transformation, but formally permitted within the 
generalised Mansouri-Sex1 test theory. 

It is interesting to note in this connection that all such corrections from any such test theory in 
any experiment, including all those discussed in Section 3, are bilinear in speeds which have to be 
the relative speeds of physical material. Y0 makes both of these velocity factors a speed typical of 
the solar system, ~0 = 367 km/s (Table 1). Any experiment to rival for precision the experiment we 
discuss has either to depend totally (i.e. doubly) on u. or has to rival this cosmic speed. This is not 
difficult since this speed is still much less than the speed of light: Q/C = 1.22 x 10s3; even a sodium 

Table 1 
Values for CMB dipole anisotropy from Kogut et al. [loo] and Bennett et al. [16]. I” and b” are the galactic longitude 

and latitude; 6T is the maximum temperature excess of the CMB, and vo tbe corresponding weed 

Kogllt 

264.4 f 0.3O 

48.4 i 0.5” 
3.3 65 f 0.027 rnK 
367km/s 

Bennett 

264.4 * 0.2O 
48.1 + 0.4” 
3.363 f0.024 mK 

367lan/s 



174 R. Anderson et al. I Physics Reports 295 (1998) 93-180 

ion, for example, reaches this speed with 28 kV. One may argue with Narlikar et al. [149] for a 
cosmic identification of any preferred frame relevant for any laser experiment, when the relative 
velocities will be the same. What is unique is the requirement for a non-inertial frame in order to 
generate the Sagnac effect, including its possible preferred-frame dependence; and to describe the 
latter, the generalised test-theory given here is essential. 

The next terms within the numerator of Eq. (139), Y, = (a. 6u)(u,~ A) + (52. uo)(6u. A), might 
be thought to be comparable with C1 (if not C,) in that both these corrections (Y,, C,) are linear in 
each of the speed u. and the rotation-induced speed 6v of the Earth’s surface. However Yi vanishes 
because 6u = 51 x R and so is perpendicular to both fl and A for a horizontal ring laser (when A 
is parallel to R). 

We estimate Ci and C,. With a suitable choice of time origin u. 02 = uo cos(6 + A) cos Q2t, 
u. - h = o. sin 6, and a x R . u. = uoi2R cos 1 cos 6 sin Qt. The two terms are therefore distinguishable 
experimentally through having phases differing by 90”. Although C1 is four orders of magnitude 
smaller than C2, the corresponding parameters have not been measured nearly as accurately, and 
this term should strictly be retained. For simplicity of exposition we keep only the dominant term, 
which will be of amplitude 

cy [$ 62 j?2] 0 z$ cos (6 + 2) sin 6 = + - 
2 sin 1 

= 9.2 x 10-4[; + & - /32] 

If therefore we wish to detect deviations in & - /I2 from the special relativistic value (of -i) at say 
the level of parts per thousand, we need to monitor the Sagnac frequency signal (dfb = 69 Hz) for 
a diurnal fluctuation of relative magnitude 1 ppm, or an absolute magnitude of the order of 70 pHz. 
Current frequency resolution has already reached this goal [203], although a diurnal variation such as 
that proposed here would have been eliminated in current dedrifiing techniques. However as Miiller 
et al. [146] show in their recent and useful summary, other experiments have greatly improved on 
this, determining & - p2 to parts in 109. Robinson [184] makes this even more precise in the light 
of studies of atomic or nuclear frequencies. The test considered here, then, is properly regarded as 
a test of the whole theoretical framework which leads to Eq. (13 1 ), with its considerable novelty 
over the expression standard for Mansouri-Sex1 theory in inertial frames [ 1461. 
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